3D科学谷 » 3D科研成果 //www.ganjiayu.com 三维科学, 无限可能! Thu, 21 Nov 2024 03:41:33 +0000 zh-CN hourly 1 https://wordpress.org/?v=3.9.40 中科院福建物构所吴立新研究员团队:光固化4D打印研究获新进展 //www.ganjiayu.com/?p=17264 //www.ganjiayu.com/?p=17264#comments Mon, 21 Oct 2019 08:15:01 +0000 //www.ganjiayu.com/?p=17264 4D打印技术是将3D打印技术与智能材料结构结合起来发展出的新技术,智能材料结构在3D打印基础上受外界环境激励下随着时间实现自身的结构变化,从而使三维物体增加了一个时间维度。4D打印技术可改变传统的“机械传动+电机驱动”的模式,使物体在地下管道、航天器、人体器官等难以接触到的地方进行自我组装,2016年被列为未来十大颠覆世界的技术之一,在航空航天、电气自动化、机器人、纺织材料、组织工程、医疗器械、药物输送载体等领域有很多的应用前景。

4D research

最近,中国科学院福建物质结构研究所、中科院功能纳米结构设计与组装重点实验室吴立新研究员团队在科技部国家重点研发计划重点专项和海西研究院“一三五”重点培育项目的支持下,首次报道具有永久形状可重构性的4D打印形状记忆聚合物,设计合成了一种带有醛基的新型甲基丙烯酸酯单体(4-甲酰基苯甲酸2-(甲基丙烯酰氧基)乙酯,MEFB)和超支化硅氧烷交联剂(HPASi),构建出具有动态亚胺键的(甲基)丙烯酸酯体系(IEMSis),用以实现4D打印。HPASi的柔性链结构显著提高了IEMSis的韧性,约为添加前的33-97倍。HPASi的交联作用也赋予IEMSis良好的形状记忆性能,它们的形状固定率和形状恢复率分别为97.5-97.6%和91.4-93.7%。同时,在没有催化剂和相对温和的条件下,IEMSis可以通过亚胺键的动态交换实现应力松弛,使得4D打印的永久形状在特定条件下还可以重构,因而可望扩展4D打印技术的应用范围。相关研究成果发表在ACS Applied Materials & Interfaces(2019, DOI:10.1021/acsami.9b14145)。博士后缪佳涛为该论文的第一作者。该研究采用林文雄团队研发的设备,成果已在海西研究院参股公司国锐中科应用。

此前,该团队在作为4D打印基础的3D打印树脂研究方面取得一系列进展。纳米粒子增强热塑性3D打印树脂成果发表在Materials & Design(2016, 102, 276-283),已被引用193次,被爱思唯尔出版集团列为该杂志Most Cited Articles;纳米粒子增强光固化3D打印树脂成果发表在Composites Part A(2019, 117, 276-286)和Composites Part A(2016, 88, 234-242);稀土磁性3D打印树脂成果发表在Journal of Alloys and Compounds(2017, 715, 146-153);可发泡3D打印树脂成果发表在Advanced Engineering Materials(2018, 20, 1800215)和Materials & Design(2016, 105, 152-159);与许莹团队合作研究的双固化3D打印树脂体系发表在Journal of Materials Science(2019, 54, 5865-5876),受到了国内外同行的广泛关注。

论文链接:https://pubs.acs.org/doi/10.1021/acsami.9b14145

文章来源:高分子科技

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

]]>
//www.ganjiayu.com/?feed=rss2&p=17264 0
Highlights l 浙江大学研发一种高精度3D打印组织工程支架,力学强度可调、丝径孔径可控 //www.ganjiayu.com/?p=16598 //www.ganjiayu.com/?p=16598#comments Wed, 21 Aug 2019 11:45:43 +0000 //www.ganjiayu.com/?p=16598 聚合物3D打印技术可被用于制造生命科学领域的组织工程支架。常规3D打印技术精度控制在100-200微米量级(主要指打印出的纤维直径),然而细胞的尺寸在10微米左右。试想,如果用这样的组织工程支架去进行组织培养,那么支架丝径相对于细胞而言就好像是一座大山,那么,细胞爬满整个支架的效率很低。

如果将支架丝径降到接近乃至小于细胞尺度,会有什么有趣的现象呢?浙江大学贺永教授课题组提出了一种基于近场直写3D打印技术的力学强度可调、丝径与孔径可控的非均质支架(MEWHS),通过该技术制造的支架丝径在3微米-50微米之间可控。研究团队用这个支架研究了细胞与支架的相互作用,发现细胞可以像竹子一样定向生长,随着结构的变化,细胞在支架上有多种未见报道的现象。

block 调控支架结构诱导细胞的特定生长

作为细胞的载体,组织工程支架被广泛应用于三维细胞培养。而支架与细胞的相互作用也在组织工程领域引起广泛关注,支架的刚度、孔径等因素会显著影响细胞的粘附、增殖、分化等。

而传统的3D打印支架由于纤维直径远大于细胞尺寸,无法产生上述的相互作用。具有超细纤维的静电纺丝支架则由于纺丝过程不可控,只能获得均匀结构。3D科学谷了解到,浙江大学贺永教授课题组提出了一种基于近场直写技术制造的力学强度可调、丝径与孔径可控的非均质支架(MEWHS),通过调控支架结构诱导细胞的特定生长

区别于传统的静电纺丝(纤维不可控)与熔融沉积(FDM)的3D打印(纤维直径太大),近场直写技术能够实现超细纤维(几微米到几十微米)的可控沉积

通过对近场直写路径的规划,可以调节支架各部分的孔径大小,调节细胞的粘附与生长速度。由于近场直写获得的纤维与细胞大小相仿,细胞的粘附将对纤维的直径变化非常敏感。通过对打印过程中各项参数调控,纤维直径能快速变化,辅以粗细纤维的特定排布,细胞在支架上将呈现不同的生长形态。

Paper_1非均质支架原理示意图。来源:Materials & Design

不同细胞具有不同大小与形态,即使在同一支架上也会呈现不同形态。如BMSCs(骨髓间充质干细胞)通常能伸长超过100微米甚至200微米,而HUVECs则通常小于100微米。在孔径为200微米的支架上,BMSCs会直接跨过孔隙,在纤维之间“搭桥”,而HUVECs则会沿着纤维粘附,先把方孔围城圆形,再渐渐填满。

Paper_2不同尺寸细胞在支架上的形态差异。来源:Materials & Design

利用近场直写的可控沉积,制造的支架可以具有不同的孔径与孔隙形状,为之后更深入研究细胞-支架相互作用提供可能。在实验中,研究人员接种了HUVECs的非均质支架,不同区域的细胞数量在第7天有了明显的区别。

Paper_3孔隙不同的支架与细胞增殖的差异。来源:Materials & Design

研究人员探索了对纤维直径产生影响的多种因素,最后选择速度作为打印过程中控制直径的主要变量,实现在均匀的孔径下实现支架的非均质特性。在这种情况下,支架的不同区域具有不同力学强度,在不同方向的受力作用下,将产生不同程度的变形。通过更细致的直径调控,粗细纤维能组成复杂图案,如五角星、太极、求是鹰的图案(细纤维肉眼观察比粗纤维更透明)。

Paper_4可控的纤维形成的具有不同力学强度与图案的支架。来源:Materials & Design

纤维直径不同也会对细胞粘附产生影响,细胞在接触粗纤维时更倾向于整体粘附与粗纤维表面,以圆形方式填充孔隙;而在接触细纤维时细胞则更倾向于以一端缠绕细纤维,进而形成“搭桥”。由此,细胞在特定排布的粗细纤维上,产生了明显的定向生长趋势。

Paper_5细胞在特定粗细纤维排布上产生的定向效果。来源:Materials & Design

浙江大学贺永教授课题组提出的高精度3D打印非均质支架,提供了通过设计特殊支架结构来诱导细胞生长的策略,通过这一策略,组织工程领域的科研人员将能够更好地模拟体内复杂的环境

相关论文”Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers”已被Materials & Design期刊录用。

文章来源:贺永科学网博客

http://wap.sciencenet.cn/blog-2159320-1192413.html?mobile=1

- – - – - -

更多3D打印行业发展态势,敬请参加TCT深圳展(2019年10月15-17)期间的论坛,详细倾听3D打印领域的分析专家Chris Connery (CONTEXT公司全球副总裁),Filip Geerts(欧洲机床工业及相关制造技术协会总干事), 王晓燕 (3D科学谷创始人)共同为您带来的全方位的剖析与灼见。

报名论坛并缴费,请即刻扫描图片上方二维码

TCT shenzhenTCT 深圳展会期间的TCT论坛-行业透视Section

3D打印与工业制造登陆京东网上书店,点击微课视频收看超过9万人观看的3D科学谷创始人微课

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.ganjiayu.com,
在首页搜索关键词 网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=16598 0
浙江大学谢涛团队:实现数字光处理3D打印热塑性聚合物! //www.ganjiayu.com/?p=16609 //www.ganjiayu.com/?p=16609#comments Mon, 19 Aug 2019 00:53:41 +0000 //www.ganjiayu.com/?p=16609 3D打印见证了一个高度复杂的定制产品成为现实的新时代。因此,3D打印在医疗设备、航空航天结构、能源设备和软机器人等工程应用中显示出巨大的应用前景。然而,目前3D打印依然受到各种因素的限制,其中打印速度和材料的通用性是最关键的。在打印速度方面,采用数字光处理(DLP)的逐层打印比采用熔融沉积成型(FDM)和立体光刻(SLA)等方法的逐点打印具有明显的优势。对DLP的进一步创新,如z-维的连续构建,可以实现远远超过任何其他方法的打印速度。一般来说,DLP采用多官能度的液态树脂,在数字光照射下,树脂发生交联,形成热固性聚合物,实现快速液固分离,但打印得到的热固性聚合物无法再加工,限制了该技术的广泛应用。原则上,如果将DLP技术扩展到可再加工的热塑性聚合物,就可以克服这一限制。液态单体和对应的低分子量非交联聚合物通常具有很好的混溶性,所以想要获得单体和非交联聚合物之间能够快速分离的独特DLP技术并不简单。

DLP Study_1近日,来自浙江大学化学工程联合国家重点实验室教授谢涛课题组,报道了通过控制打印过程中同时发生的两个相互竞争的动力学过程 (聚合和聚合物溶解) 来实现热塑性聚合物DLP 3D打印的成功尝试。以选定的单体4 -丙烯酰吗啉(ACMO)为例,演示了热塑性三维支架的打印,利用其独特的水溶性特性,可以进一步转化为各种材料/设备。ACMO的超低粘度,加上表面氧阻聚,使新鲜树脂快速铺展在已固化的平面,可实现高速3D打印。该工艺简单的实现机制和材料的通用性拓宽了3D打印在构建功能3D设备 (包括可重构天线、形状移动结构和微流体) 方面的应用范围。该研究成果以题为“RapidOpen-Air Digital Light 3D Printing of Thermoplastic Polymer”的论文发表在国际知名学术期刊AdvancedMaterials上(见文后原文链接)。

DLP Study_2图1. DLP打印热塑性ACMO树脂的可行性。a)自上而下的DLP设备和打印配方。b) ACMO树脂与商用热固性丙烯酸酯树脂(FSL-C, S-MAKER)的固化动力学对比。c) 多种打印结构。d) UV固化后打印出不同半径的柱子。e) 微型开尔文晶格及其SEM结构。

DLP Study_3图2.快速敞口打印过程。a)表面氧阻聚在固化树脂切片内沿z方向深度衰减。b)分子量和双键转化率沿z方向深度变化的定量分析。c)光照时间对抑制表面氧阻聚深度的影响。d)氩气处理树脂、对照样品与氧气处理树脂快速打印模型比较。

DLP Study_4图3. ACMO聚合物的热塑性特性。a) 随着配方中硫醇含量的增加,流动性增强。b) 硫醇含量对聚合物分子量和熔融指数的影响。c) 热塑性聚合物和商用热固性树脂打印件的水溶性对比 d) 硫醇含量对聚合物分子量和溶解动力学的影响。

DLP Study_5图4.演示了牺牲模塑的应用。a) 环氧SMP形状记忆循环。b) 基于液体金属的可重构天线的制造工艺。c) 可重构天线的频率调谐。d) 基于PDMS的微流控装置。

从原理、材料和工艺出发,本工作将DLP打印的范围从热固性聚合物拓展到了热塑性聚合物,利用材料本身粘度低,表层氧阻聚严重的特点实现了高速打印。此外,将一些无法通过传统DLP技术打印的材料,使用DLP打印热塑性聚合物作为牺牲模具,实现了这些材料的DLP打印。该工作实现了高速打印热塑性聚合物,这可能会带来更多的技术机遇,超出本研究所展示的成果。本工作第一作者为浙江大学化学工程与生物工程学院在读博士生邓诗泓,论文的第一通讯作者为谢涛教授,论文第二通讯作者为吴晶军博士。

文章官网链接:

https://onlinelibrary.wiley.com/doi/10.1002/adma.201903970

文章来源:高分子科学前沿

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.ganjiayu.com,
在首页搜索关键词 网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=16609 0
基于断层成像重建的立体3D打印技术 //www.ganjiayu.com/?p=16185 //www.ganjiayu.com/?p=16185#comments Tue, 02 Jul 2019 04:06:37 +0000 http://www.51shape.com/?p=16185 增材制造是成型复杂结构零件的有效方法,但是增材制造的制造速度、表面质量等问题仍是制约其进一步突破现有工艺的瓶颈技术。近日,加州大学伯克利分校和利弗莫尔国家实验室的研究人员提出通过断层成像重建技术实现立体3D打印,从而大大提高了成型速率(如图1所示)。与通常增材制造技术中“点-线-面-体”的制造思路不同,该技术工作原理与计算机断层(CT)扫描的逆向操作类似:在CT成像技术中,X射线管在待测物体周围旋转,成型各截面图像,再利用计算机重构出被测物体3D结构模型;而在基于断层成像重建技术的立体3D打印中,研究人员从3D模型的不同角度计算物体的截面形状,使用投影装置在不同角度投射对应的2D图像,投射光斑在装有光敏树脂原料的圆柱形容器中成像,引发固化反应,实现零件成型。

1图1 基于断层成像重建技术的立体3D打印 (A-B)成型原理(C)成型过程(D-G)成型零件

该成型方法中,容器中不同位置液态树脂的固化与否取决于该位置的累计通光量,特定波长的光将使光敏树脂(此处为丙烯酸酯)产生自由基团,而氧气将会抑制自由基团产生,直到该位置累计光通量达到一定限值,氧气被消耗抑制到一定程度,树脂才会引发交联反应。根据目标成型零件的CAD模型、投影设备能量密度及材料的能量吸收率,研究人员反求出各角度截面对应的2D轮廓及旋转速率,通过投射光斑形状变化与容器旋转运动的配合控制,可以实现容器内任意空间单元通光量的控制,当目标区域通光量达到上述限值后,即可引发光敏树脂的固化反应。为避免容器旋转过程中液体流动影响零件成型精度,研究人员选用的液体树脂粘度高于90Pa·s;通过加入不遮挡固化波长的染料,还可以实现树脂颜色及透明度的调整。

2图2应用该技术制造的各类零件(A-C)复杂结构零件(D-H)无支撑制造零件 (I-J)柔性材料零件(K-L)光滑表面零件【图中未注线段均为2mm】

研究人员应用该技术制造了多种零件(如图2中所示),实现了最小特征尺寸0.3mm的成型,厘米级零件成型速率约为30-120秒,预测最大成型尺寸可达0.5m。该成型方法的成型速率不依赖于层数、截面面积与复杂程度,且高粘度树脂可实现自支撑作用,因此具有成形速度快、无需支撑、可成型高粘度材料、可避免柔性材料成型中变形问题等优势;通过在成型容器中预置其他材料,还可以实现复合材料零件的一次成型(如图3所示)。

3图3 通过预置其他材料一次成型复合材料零件(作者称之为over-printing)

参考文献:
”Kelly Brett E, Bhattacharya Indrasen, Heidari Hossein, Shusteff Maxim, Spadaccini Christopher M, Taylor. Hayden K.Volumetric additive manufacturing via tomographic reconstruction. Science. 2019 Jan.

原创: 王忠睿、李涤尘,机械制造系统工程国家重点实验室

文章来源:3D打印分会中国机械工程学会

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=16185 0
或将改变电子产品设计与制造方式的立体电路3D打印技术 //www.ganjiayu.com/?p=16166 //www.ganjiayu.com/?p=16166#comments Sat, 29 Jun 2019 07:40:39 +0000 http://www.51shape.com/?p=16166 德克萨斯大学埃尔帕索分校(UTEP)EM实验室研发了一种制造三维电路( 3D/volumetric circuits,3D 立体电路)的混合3D打印技术,科研论文“Design and Hybrid Additive Manufacturing of 3-D/Volumetric Electrical Circuits”发表在美国电气电子工程师学会(IEEE)2019年6月刊中。

block 任意形状的电路

论文指出,这是一种完全在三维环境中进行建模的3D立体电路制造技术,实现制造的打印技术为混合直写3D打印工艺(direct-write 3-D printing process)。

UTEP-circuit3D立体电路内部工作原理。来源:UTEP

该技术的影响和应用潜力在于,它能够实现几乎任何形状的电路制造,并可以与其他物体、结构集成在一起。这意味着电路的制造不必受限于PCB 板的形状,并为小型、轻量化电子设备的制造提供了新的可能性。

根据3D科学谷的了解,EM实验室在3D立体电路设计软件与自动化方面取得了突破,他们能够同时打印金属和塑料两种不同材料的复杂零件。研究团队仍在对技术进行优化,目标是能够生产更大、更加复杂的3D立体电路。

UTEP-circuit-researcher

EM实验室开发了立体电路设计软件,作用是布局组件和路由互连线。他们将定制的计算机辅助设计(CAD)工具编程到开源建模软件中,自定义CAD工具从原理图捕获程序导入网表和组件几何,组件可以放置在任何位置并以任何角度定向

互连线可以通过手动或自动的方式放置在组件之间,在整个电路中平滑而蜿蜒的分布。在布置组件和布线互连之后,软件可以导出最终电路的电介质和金属部分的3D打印文件。

研究团队制造立体电路时使用的材料为丙烯腈丁二烯苯乙烯塑料与杜邦CB028银浆,其中塑料部件通过熔融沉积3D打印工艺进行成型。

在这项科研成果开发出来之前,EM 实验室的研究人员开展了多年相关工作。自2010年以来,实验室负责人Rumpf博士及其研究团队已经取得了一系列成果,包括发现新的电磁现象,开发超高功率频率选择性表面以及非常薄的电介质天线,研究团队还记录了光束的最小弯曲。

Rumpf博士表示,EM实验室开发的全自动化立体电路3D打印技术,或将改变电气功能的产品设计和制造方式的范式。

3D打印与工业制造登陆京东网上书店,超过4万人观看的3D科学谷创始人的微课视频

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词

网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=16166 0
EOS 研究报告: 骨小梁结构的性能分析 //www.ganjiayu.com/?p=14935 //www.ganjiayu.com/?p=14935#comments Fri, 15 Mar 2019 05:49:06 +0000 http://www.51shape.com/?p=14935 骨小梁是一种用于促进骨生长的网状多孔结构,图1所示其常见特征。增材制造技术在实现这种骨小梁结构的生产上有着天然的优势。自2007年以来,增材制造技术就被用于制造具有这些互连互通的多孔植入物。然而,目前用于评估多孔结构的监管指南和标准都是基于烧结和等离子喷涂工艺的。缺乏针对增材制造工艺的标准,传统的验证方法可能验证不了机器工艺参数对多孔结构的影响。本研究的目的是评估工艺参数变化时对测试零件尺寸精度的影响(图2),以及在批量生产情况下测试件力学性能的可重复性。

reticulated porous-acetabular cup
图1 – 使用DMLS®工艺加工的多孔髋臼杯测试样(意大利Permedica)

block 测试方法

测试件制备采用的是优化60μm层厚参数,性能测试基于ISO13314标准。首先根据增材制造原则预先选择几何结构,使用nTopology®(纽约)进行设计,得到的voronoi类型的结构(图2)。最终结构是随机多孔结构,孔隙率为62.5%,短棒直径350微米,平均孔径600微米。

reticulated porous-Geometry of the as-built compression test coupons
图2 – 压缩测试试样

实验开始时,需要对参数进行优化,进行了一系列实验设计(DoE)以找到合适的多孔结构曝光参数。图3是通过改变激光功率和扫描速度来完成的。评估了参数的变化及其对零件质量的影响,并根据测试件要求选择最终参数。 经优化的零件孔隙率为71%,平均直径为330微米,平均孔径为750微米。 由于试样是完全多孔结构的,因此使用阿基米德原理测量其密度,得到99.7%的平均相对密度。

Process parameters
图3 – 工艺参数对X和Y与Z方向厚度的影响

该DoE的结果验证了文献中的理论,即激光功率对多孔结构的影响最大,尤其是Z方向的支撑厚度(图4)。 Z方向激光功率的增长导致孔隙偏差和椭圆形结构。 密度的一致性证明了工艺稳定性,多孔结构的工艺参数可进一步影响零件尺寸。

reticulated porous-laser power on strut thickness
图4 – 激光功率对厚度(Z方向)的影响

下一步,在DMLS®机器上制备了三个相同的打印任务(EOS M 290 EOS GmbH,Krailling,Germany,图5)。 每个打印任务由64个完全多孔的圆柱形部件组成,这些零件分布在平台16个位置,并根据区域之间和区域内部的变化进行评估。使用Ti-6Al-4V ELI材料(EOS Titanium Ti64ELI,EOS Oy,Turku,Finland)总共打印192个试样。 使用压缩空气然后超声波进行清洁。打印完成的测试件中,对128个测试件使用阿基米德原理进行非破坏性测试,对96个测试件通过压缩测试(ISO 13314)进行破坏性测试,剩余32个进行横切,嵌入和后处理以进行体视评估。

reticulated porous-Positioning of the porous test coupons
图5 – EOS M 290基板上多孔测试件的位置

block 测试结果

测试过程能力可获得过程的稳定性以及它与规格参数限制的接近程度。将图6中显示的相对密度,最大抗压强度和弹性模量的结果分别绘制在过程能力报告中,其相应的规格限制来自于批量生产情景的最小过程能力指数1.33。虽然这不可以评估过程中心性(Ppk),但可评估正态性,范围和过程能力。测试的多孔结构件超过最小过程能力要求。在此阶段,将新过程指数定为1.67。与目前99.99%工艺产率的结果相比,生产工艺的持续改进可以产生更好的结果,并且可达到百万零件中63个偏离。应该注意的是,DMLS®工艺中建造的128个零件的孔隙率变化仅占绝对值变化的1.76%,而传统的发泡制造工艺预计会有高达10%的变化。

reticulated porous-result
图6 – 左上角:用于打印多孔测试件的EOS M290

右上方:多孔结构相对密度的过程能力分析

左下方:测试件的最大抗压强度[MPa]能力分析

右下方:测试件的弹性模量[MPa]能力分析

block 意义/临床相关性

随着越来越多基于激光3D打印的多孔应用引入医疗领域,了解AM设备工艺参数对产品力学性能的影响以及它们在批量生产中的表现是十分重要的。我们的愿景是增材制造不仅可用于替换植入物表面的涂层,并且可以用于植入物的承力结构。

文章来源:EOS

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=14935 0
谷研究 l 改善近壁流动通道循环疲劳,看GE如何发力新型涡轮转子叶片 //www.ganjiayu.com/?p=13602 //www.ganjiayu.com/?p=13602#comments Fri, 23 Nov 2018 07:12:11 +0000 http://www.51shape.com/?p=13602 3D打印可以实现更复杂更集成的设计,这使得叶片的冷却通道设计可以以功能实现为主。

 18112301

block 更随形,更复杂

燃气涡轮发动机包括压缩机、燃烧器和涡轮机,在压缩机中压缩的空气与燃料混合并在燃烧器中点燃,然后通过涡轮机膨胀以产生动力。涡轮机内的部件,特别是周向排列的转子和定子叶片,为了承受重复的热循环以及该环境的极端温度和机械应力,翼型必须具有坚固的结构并且被主动冷却。

涡轮转子和定子叶片通常包含形成冷却系统的内部通道或回路,冷却剂(通常是从压缩机排出的空气)通过该冷却系统循环。这种冷却回路通常由内部肋形成,所述内部肋为翼型提供所需的结构支撑,并且包括多个流动路径以将翼型保持在可接受的温度范围内。通过这些冷却回路的空气通常通过翼型的前缘、后缘、吸力侧和压力侧上的薄膜冷却孔排出。

燃气轮机的效率随着点火温度的升高而增加,因此,对技术进步的需求不断增长,为了使涡轮叶片能够承受更高的温度。这些技术进步有时包括使用能够承受更高温度的新材料,也经常涉及改善翼型的内部构造以增强叶片结构和冷却能力。

众所周知,通过在四壁布置中形成的近壁流动通道可以实现高冷却效率。然而,近壁流动通道的挑战在于外壁经历比内壁显着更大的热膨胀水平。这种不平衡的增长导致在内肋连接的点处产生应力,这可能导致低的循环疲劳,这可能缩短叶片的寿命。

根据3D科学谷的市场研究,GE公司通过3D打印技术正在开发一种涡轮转子叶片,叶片的特殊设计包括由凹压侧外壁和凸吸入侧外壁限定的翼型,翼型沿前缘和后缘连接,并且在它们之间形成径向延伸的腔室,用于接收冷却剂的流动。

 18112302

block 小突起,大作用

这种新型涡轮转子叶片的设计目的是提供有效的近壁冷却,应当理解,近壁冷却是有利的,因为冷却空气紧邻翼型的热外表面,并且由于通过限制通过窄通道的流动而实现的高流速,所产生的传热系数很高。 然而,由于翼型内经历的不同水平的热膨胀,这最终可能缩短转子叶片的寿命。为了避免差热膨胀导致低周疲劳问题缩短了部件寿命。

 18112303

GE公司过去已经评估了许多不同的内部翼型件冷却系统和肋结构,并且已经尝试纠正该问题。一种方法提出过冷外壁26,27(如图),以便减小温差,从而减小热生长差。然而,应该理解的是,通常实现这种方式的方法是增加通过翼型件循环的冷却剂的量。因为冷却剂通常从压缩机排出空气,所以其增加的使用对发动机的效率具有负面影响,因此是优选避免的解决方案。其他解决方案还包括使用改进的制造方法/或使用相同量的冷却剂的更复杂的内部冷却配置,虽然这些解决方案已经证明有些有效,但每个解决方案都会给发动机的运行或零件的制造带来额外的成本,并且无法直接解决根本问题。

 18112304

另一种方法采用某些弯曲或起泡或正弦或波浪形的内部肋(“波状肋”),这减轻了经常在涡轮叶片的翼型中发生的不平衡的热应力。这些结构降低了翼型25的内部结构的刚度,从而提供了目标柔性,通过该柔性,应力集中被分散并且应变卸载到能够更好地承受它的其他结构区域。以这种方式,可以避免寿命缩短的应力集中和应变。然而,在某些通道40之间仍然会产生高应力区域。叶片内部通道40的其余部分通常是低冷却效率区域。这些低冷却效率区域通过“近壁冷却”通道与高热负荷区域隔离,或者面向叶片上的非常低的热负荷面。

 18112305

通过设计的球状突起,可以具有由多于一个曲率半径R1,R2限定的横截面,球形突起可以保护外部至内部和内部至外部转向开口,从而降低转弯附近的应力集中的冲击,这允许更复杂的多壁肋构造。球状突起通过对转弯开口进行轮廓加工来保护转弯免受这些高应力的影响,从而解决沿内通道面存在的高弯度线肋应力。

block 3D科学谷Review

根据3D科学谷的市场观察,3D打印技术可以说开辟了涡轮发动机制造商提升叶片冷却效果的一条新的赛道。更重要的是3D打印技术使得改良过内部冷却结构的叶片能够以传统加工方式难以实现的工艺制造出来。

此前,西门子通过3D打印不仅仅简化了叶片的生产方式,还提升了叶片的性能。

而不仅仅是叶片的冷却,根据3D科学谷的市场研究,UTC联合技术将3D打印技术应用于燃气涡轮发动机部件的冷却方案,包括在燃气涡轮发动机部件的壁内部的点阵结构。通过点阵结构为燃气涡轮发动机部件提供有效的局部对流冷却,使得部件可以经受通过核心流动路径的热燃烧气体的高温。

选区激光熔融增材制造工艺允许实现更复杂冷却通道模式,这样的通道几乎无法通过传统的制造方法制造。根据GE的一项专利US009551490,其开发的喷油器主体采用直接激光融化(DMLS)或电子束熔化EBM技术制造。更加集成的设计减少了潜在的泄漏和其他潜在的不良影响,例如通过传统方法需要有多个组件钎焊或结合在一起以形成冷却通道,这不仅仅增加了工艺的复杂性和程序,还带来了潜在的质量隐患。

参考资料:US10119589B2_microlattice damping material and method for repeatable energy absorption

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=13602 0
Advanced Materials:数字化可调微流控3D生物打印实现复杂空腔组织或器官的精准构建 //www.ganjiayu.com/?p=13564 //www.ganjiayu.com/?p=13564#comments Tue, 20 Nov 2018 01:30:58 +0000 http://www.51shape.com/?p=13564 近日,上海交通大学医学院附属仁济医院整形外科皮庆猛博士在国际生物材料顶级杂志Advanced Materials(最新影响因子21.95)在线发表题为“多层环状组织的数字可调微流控生物打印”(Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues.)的研究论文,揭示3D生物打印已经实现空腔组织打印且打印后细胞能够长期存活。

640.webp

该研究通过采用自行研发的同轴多通道生物打印系统(MCCES)可调控性构建复杂空腔组织设计理念,实现了不同亚层结构一次性同步准确打印构建的设想。该研究系统有望用于实现复杂空腔组织或器官的精准构建,尤其对需要空腔器官或组织移植的病人,是一种新的获取供体的形式。此外,该研究成果有望用于体外血管、肠道、泌尿系统等空腔脏器疾病模型模拟、药物筛选、组织移植替代物等诸多领域。论文第一作者为仁济医院整形外科皮庆猛,哈佛大学医学院Yu Shrike Zhang教授及加州大学洛杉矶分校Ali Khademhoseini教授为共同通讯作者。

2.webp

3D生物打印难在哪里?皮庆猛介绍,生物打印需要考虑非常多的因素,比如:打印材料的细胞相容性、力学强度、材料毒性、打印可塑性、孔隙率、降解速率等等。相对于一般实体组织,空腔组织构建更为复杂,不仅要求多细胞成分,还涉及到不同亚层细胞类型不同、功能不同等,这导致构建时细胞如何精确排列、空腔如何维持等诸多问题,使得打印构建面临更多挑战。该研究证实3D生物打印通过新型设计系统,快速、精准、个性化构建含有不同功能细胞的血管、尿道等复层空腔组织,组织结构清晰。

3.webp

皮庆猛比喻,打印实体组织相当于烤一个实心的面包,打印复层的空腔组织,相当于烤一个空心的面包,这个空心还要分不同的夹层,可以一层奶油一层蓝莓酱,也可以一层芝士一层草莓酱,层与层紧紧贴合又彼此分开。相对于一般的3D打印,生物打印需要全过程控制细胞活力,保护细胞不受伤害;其次空腔内的不同功能细胞在各个层面能够均匀分布,更符合人体正常结构。

4.webp

据悉,仁济医院皮庆猛团队长期致力于3D生物打印、水凝胶、干细胞与组织工程等研究组织再生,在Advacned Materials、JoVE、RCS Advances等期刊发表10篇论文。此次在《Advanced Materials》发表的研究成果填补了国内空白,预示我国3D生物打印技术正逐步与世界接轨,将为国内同行以及相关领域带来广阔的应用空间。

5.webp

论文信息:Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues,Adv. Mater. 2018, 30, 1706913.

文章来源:微流控科技

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

 

]]>
//www.ganjiayu.com/?feed=rss2&p=13564 0
三倍的强度,3D打印超强耐腐蚀不锈钢316L //www.ganjiayu.com/?p=10518 //www.ganjiayu.com/?p=10518#comments Wed, 01 Nov 2017 01:29:14 +0000 http://www.51shape.com/?p=10518 3D打印正在获得工业制造业越来越多的重视,但即便是很多看好3D打印技术的制造业人士,对3D打印所能实现的产品形状感到乐观,但对3D打印所能实现的力学性能感到疑虑。

am_steel_llnl_1

不锈钢是近一百五十年前发明的,今天仍然广受欢迎。它是通过将钢铁本身与铁和碳(有时是其他金属如镍)的组合进行熔炼制成的,并添加了铬和钼元素,防止生锈和腐蚀。铬促进了钢的钝化并使钢保持稳定钝态的结果。随着钼含量的增加,钢的高温强度提高,比如持久,蠕变等性能均获较大改善。

金属加工是理解冶金领域的一门深奥学问,复杂的一系列冷却,再加上热处理和轧制等步骤使材料具有紧密堆积的合金晶粒结构,并且颗粒之间具有薄边界的微观结构。当金属弯曲或受到应力时,就容易产生裂缝,但是强大的边界作用可以阻止这些裂缝的发生,使得材料更加坚固,同时仍然具有足够的灵活性以形成所需的形状。

3D打印研究人员长期以来一直试图制造更坚固的金属零件。通过粉末床选择性金属熔化技术,计算机控制的大功率激光束在金属表面上前后移动。激光熔化的颗粒撞击并融合在一起,然后粉末床下降进行另一层金属粉末的加工。新熔化的材料结合到下面的层,通过重复这种逐层熔化的方式,工程师们可以构建复杂的形状,例如火箭及航空发动机

问题是在显微镜下,这些不锈钢零件通常是高度多孔的,并且容易断裂。

最终,美国劳伦斯·利弗莫尔国家实验室(LLNL)联合乔治亚理工大学和美国俄勒冈州立大学的阿姆斯国家实验室的科学家们通过改变加工参数和过程控制来提高零件的力学性能。通过控制激光能量以及采取快速冷却的过程,科研人员获得了更加致密的零件加工结果。

科研人员在316L不锈钢的3D打印领域取得了“突破”,这是一种常见的“海洋级” 不锈钢具有低碳组成。在石油管道、发动机零件和厨房设备等场合被广泛使用,通常具有低腐蚀性和高延展性。令人兴奋的是,测试表明坚固耐磨的3D打印316L不锈钢可以提供比其他形式的钢更高水平的强度和延展性,使其有助于化学设备、医疗植入物、发动机零件以及需要其设备优异物理性能的各种其他应用。

am_steel_llnl_3

现在,研究人员不仅仅将这种过程控制工艺应用到不锈钢的加工中,还扩展到其他金属材料的加工中。3D科学谷了解到他们可以使得3D打印机在不同的尺度上构建小型的墙壁单元结构,这些结构可以防止裂缝和其他常见问题的发生。 测试显示,在某些条件下,这些3D打印的不锈钢零件的强度是传统制备工艺所实现的强度的三倍,这一发现还发表在Nature Materials*上。

am_steel_llnl_4

宾夕法尼亚州的内基梅隆大学的机械工程师Rahul Panat表示,美国劳伦斯·利弗莫尔国家实验室(LLNL)的发现是非常令人兴奋的事情。另外,Panat和他的同事们正在通过市面上购买的3D打印机来通过这种方法制造更强的金属。

这种高强度不锈钢的获得可以使得3D打印技术不仅可用于航空航天行业制造飞机燃料箱,还可以用于核电厂用来制造高强度压力管。

block 3D科学谷REVIEW

3D科学谷认为,3D打印最容易被业界记住的是无模化以及所释放的设计自由度。而通过3D打印所实现的材料制备技术的提升是当前商业界所容易忽视的地方。所幸的是世界范围内,不少的研究机构在进行通过3D打印技术来提升材料性能的研究。这些研究结果将进一步扩展3D打印的市场应用空间,刺激金属3D打印技术的市场增长。

随着设备加工技术的提升,加之材料的配合以及价格的合理化,金属3D打印势必在产业化领域的道路越来越宽。而对于加工应用方来说,要迎接这样的技术浪潮,了解金属3D打印的冶金加工学就成为必修课。

的确,在金属加工过程中,发生着许多微妙的事情。就拿选择性激光熔化技术来说,在激光对粉末的融化加工过程中,每个激光点创建了一个微型熔池,从粉末熔化到冷却成为固体结构,光斑的大小以及功率带来的热量的大小决定了这个微型熔池的大小,从而影响着零件的微晶结构。并且,为了熔化粉末,必须有充足的激光能量被转移到材料中,以熔化中心区的粉末,从而创建完全致密的部分,但同时热量的传导超出了激光光斑周长,影响到周围的粉末,出现半熔化的粉末,从而产生孔隙的现象。

对于应用端来说,除了设备的配置这样的刚性条件,冶金性能方面还与金属3D打印过程的诸多条件相关。加工参数的设置、粉末的质量与颗粒情况、加工中惰性氛围的控制、激光扫描策略、激光光斑大小以及与粉末的接触情况、熔池与冷却控制情况等等都带来了不同的冶金结果。

通常来说加工越快,表面粗糙度越高,这是两个此起彼长的相关变量。另外,残余应力是DED以及SLM加工技术所面临的共同话题,残余应力将影响后处理和机械性能参数。不过,根据3D科学谷的市场研究,根据对冶金方面的驾驭能力,残余应力也可以用来帮助促进再结晶和细小的等轴晶组织的形成。

在过去的五年里,对于金属打印过程中微观结构的理解和新合金的加工性能已经获得了不少的进步。同时还观察到微观结构的非均质性,在这方面通过表征工作(柱状晶、高取向、孔隙度等)获取对加工冶金学的进一步理解,从而不仅提高金属3D打印的工艺控制能力,还为材料制备以及后处理提出了新的要求。

下载资料,请加入3D科学谷3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=10518 0
麻省理工学院研究“自剥离”液滴原理,可用于理解和控制3D打印材料附着力 //www.ganjiayu.com/?p=10300 //www.ganjiayu.com/?p=10300#comments Fri, 06 Oct 2017 01:51:19 +0000 http://www.51shape.com/?p=10300 在LENS 3D打印技术中,金属粉末随着喷嘴被喷射出来,在激光的作用下瞬时间熔化,紧接着这些液态的金属液滴凝固在固体表面上。

麻省理工学院的研究人员已经找到了一种控制液滴撞击固体表面活动的方法,从而确定液滴是否会粘附,反弹或“自剥离”固体表面。研究液滴与固体表面的附着属性,麻省理工学院的这一新发现,可能对未来的3D打印技术和其他技术产生影响。

麻省理工学院的发现将帮助加工过程中调整加工表面的性质,有时候需要加工出非常光滑的表面,以减少机械部件的摩擦。或者通过调整表面热导率等方式,使得表面质量变得更加可控。这种研究金属液滴与固态表面的相互作用为可控表面提供了实现的途径。

mit_self_peeling_1

对于麻省理工学院的研究人员来说,精确控制表面性质的能力使得他们能够做出非常不寻常的事情:控制和影响液滴的行为。

凝固过程中的液滴倾向于在碰到固体表面时发生两种行为:粘附或反弹。而在某些工程应用中,包括3D打印工艺,理解与控制行为的结果是非常重要的。痛点在于,很难预测或控制液滴的流向。

麻省理工学院的研究人员尝试用另外一个角度来理解液滴的行为:研究人员研究那些固体表面的热性能,认为通过对这些固体表面的热性能“调谐”从而控制液滴的各种行为。

mit_self_peeling_2

图片:熔融的金属液滴在硅树脂和玻璃基材表面上的不同表现行为

根据麻省理工学院机械工程系副教授Kripa Varanasi,研究人员发现了很有趣的现象。研究对象是两种具有相似的润湿性质的基材,但具有不同的热性能。研究人员发现熔融的金属液滴“脱落”硅树脂基材,但是紧贴玻璃基材表面。由于玻璃是一种良好的绝热材料,这个实验使研究人员相信,可以通过调整冲击表面的热性能来控制液滴的附着力。

研究人员所指的热性能,不仅仅是温度情况。更多的是热效率因素,材料传递热量的速率对控制液滴的附着力起到了关键作用。

这就像我们坐在木板和石头上的感受是不一样的:即使木板和石头的温度相同,但我们会感觉坐在石头上更冷,这是因为具有较高热导效率的石材表面可以更快地将热量从我们身上吸走。

麻省理工学院研究人员的主要实验包括研究熔融金属液滴在各种表面时的行为。这是令人特别感兴趣的领域,因为涉及到金属喷涂的沉积行为,更好地理解和控制金属液滴的粘附力意味着更好的加工结果。

根据研究人员发表的研究论文,这些见解在热喷涂和增材制造以及极紫外光刻的过程中具有广泛的应用前景。

根据Varanasi教授,液滴形成斑块的方式决定了涂层本身的完整性。如果不完美,可能会对部件的性能产生巨大的影响,尤其是在诸如涡轮叶片这样的核心零部件的应用领域。

为了实际应用这项研究结果,研究人员设想了一个能够立即调整表面特性能够控制液滴发生粘附或反弹行为。根据研究人员的设想,通过电场或磁场可以实现实时调整热性能的场景,以使得液滴与固体基材的相互作用变得更加可控。

下载资料,请加入3D科学谷3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=10300 0