//www.ganjiayu.com 三维科学, 无限可能! Thu, 14 Nov 2024 02:31:28 +0000 zh-CN hourly 1 https://wordpress.org/?v=3.9.40 金属加工领域的3D打印产业发展 //www.ganjiayu.com/?p=20359 //www.ganjiayu.com/?p=20359#comments Thu, 06 Aug 2020 05:05:29 +0000 //www.ganjiayu.com/?p=20359 本文针对金属3D打印技术的分类及在不同应用领域的发展情况做出深入的探讨与分析,从而揭示金属3D打印在制造领域将要带来的深刻变革;通过国内外应用案例的对比,从而剖析产品生命周期附价值创造驱动制造转型的发展逻辑;通过分享驱动3D打印发展的各个生态要素,从而阐述制造业从几个关键点切入3D打印领域的路径。

* 本文发表在机械工业信息研究院主办的《金属加工》杂志上

ACAM_kitty

Video Cover_Fraunhofe_Zhenjing5个振镜、可扩展的下一代选区激光熔化金属打印技术。来源:Fraunhofer ILT

kitty

l 作者:王晓燕 ACAM中国董事,负责ACAM中国发展战略、企业文化、运营发展。曾与中国汽车工程学会合作出版发行了《3D打印与汽车行业技术发展报告》,与工业和信息部工业文化发展中心合作出版了《3D打印与工业制造》,王晓燕还与联合创始人Korinna Penndorf、朱琳一起创立了3D科学谷。ACAM亚琛增材制造中心是基于Fraunhofer IPT生产技术研究所、Fraunhofer ILT激光技术研究所、亚琛工业大学等工业研究领域成员的合作。ACAM致力于为制造企业提供一站式的增材制造专业技术,成立以来积累了不同先进科研领域的专业知识,并通过提供增材领域的认证与咨询、联合研发、专业技术培训和教育服务、软件和系统工程以及定制服务,帮助企业应对增材制造技术在应用中的挑战。

block 技术突破带来更广阔的发展空间

3D打印普遍被认为是带来下一代工业革命的主要驱动因素,主要的原因是增材制造带来小批量生产的经济性和灵活性,个性化定制的可能性,以及复杂零件生产的可行性。不仅仅改变了我们对原来产品设计的印象,还带来了供应链的改变,缩短了产品上市时间,并且对环境更友好

关于3D打印对制造行业的革新作用, SpaceX首席设计师兼首席执行官马斯克有着精辟的观点:通过3D打印,可以以传统制造方法的一小部分成本和时间就能制造出坚固且高性能的发动机零件。火箭比以往任何时候都更加高效,可靠和强大。同样的,不仅仅是航天领域,3D打印在其他工业制造领域的动力装备、结构件、液压阀门、热交换器、切削刀具、模具等应用领域正在创造下一代的产品。

我们不仅要问一个问题,3D打印发展到哪里了?这种发展意味着什么?我们应该做出什么样的准备?下一步我们将看到怎样的生产与商业模式?

block 技术分类与应用

如果要全面理解金属3D打印的产业发展情况,我们首先需要还原3D打印在金属产品的制造方面的每一种技术形态与当前产业发展的结合情况。

l PBF

首先,我们来了解一下PBF基于金属粉末床的金属熔化3D打印技术,PBF被认为是一种直接的金属3D打印技术,这类技术以激光或电子束为热源来逐层熔化金属粉末,层层凝固成零件的形状。相比于金属3D打印技术,PBF是目前最广泛被使用的金属3D打印技术。包括通用电气投资14亿美元收购Concept Laser和Arcam,市场的目光也随之聚焦在金属粉末床熔化,包括激光熔化和电子束熔化两种加工方式,目前激光熔化方式被更广泛的使用。

由于可实现十分复杂的产品制造,PBF技术不仅使得复杂产品的制造变得更加可行,而且还创造了更大的围绕着产品生命周期的综合性经济效益。

在动力装备方面,PBF技术所成就的产品并不是停留在概念开发阶段,而是已经随着火箭和飞船进入了太空,随着飞机在天空中翱翔,并在发电领域起着“四两拨千斤”般的效益放大作用。3D打印所造就的下一代的产品极大的提升了人类利用资源的水平,这一切已经来到了我们的身边。

这方面,业界熟知的GE 3D打印的燃油喷嘴[1]顶部结构只有核桃般大小,里面却有14条精密的流体通道。3D打印的喷油嘴是一个精密的整体,原来20个部件成为一个零件被制造出来。新喷嘴重量比上一代轻25%,耐用度是上一代的5倍,成本效益比上一代高30%。GE奥本工厂凭借40多台3D打印机在2017年总共交付了8000个燃油喷嘴。截至2018年底,工厂完成的3D打印燃油喷嘴头总数已超过3.3万个。然而,值得注意的是,与传统加工技术跻身于PK生产效率的这条赛道不同的是,GE从燃油喷嘴中获得的最大益处并非燃油喷嘴本身,而是安装了燃油喷嘴的LEAP和GE9X发动机,3D打印正在推动航空发动机创新,GE已经发起对下一代航空发动机技术制高点的布局。

类似的成功案例不胜枚举,除了大名鼎鼎的SpaceX、NASA、GE、西门子等等通过3D打印在不断突破下一代航天器、商业飞机、燃气涡轮发电机等产品的性能极限。就在2020年,不甘示弱的欧洲也呈现了追赶态势,ESA欧洲宇航局全尺寸3D打印铜合金推力室首次热试通过,增材制造将推力室零件数量由数百个减少的三个,缩短了生产时间,降低了成本,显著提高液体推进发动机在欧洲运载火箭中的竞争力。国际上,全尺寸推力室具有3D打印铜合金衬里,该衬里具有集成的冷却通道,其外层为冷气喷涂建立的高强度外套。不仅如此,推力室的歧管和整体式喷油也是3D打印的。

国内通过3D打印助力航天事业的发展也呈现了雨后春笋之势,2019年,中国的深蓝航天液氧煤油发动机再次进行了推力室长程试车,取得圆满成功。在推力性能方面,深蓝航天对主要功能部件进行优化设计,大量采用3D打印工艺,实现了国内液氧煤油火箭发动机推力室效率从95%到99%的技术跨越,达到了国际先进水平。铂力特承担了此次试车发动机喷注器壳体和推力室身部两个零件的金属3D打印工作。发动机喷注器壳体和推力室身部均为航天发动机关键零部件,使用环境苛刻,零件内部有百余条冷却流道,使用传统工艺铣削、焊接工艺不仅制造周期长、成本高,零件性能也难以得到保证。

汽车领域,GKN与汽车制造商保时捷通过金属3D打印开发新型电子驱动动力总成的新应用。GKN根据粉末床金属熔化3D打印技术的特点,针对更高的设计自由度、更高效、更集成的动力系统开发了特定的钢材料,这种钢材料能够承受高磨损和负载,并结合3D打印所实现的功能集成进一步减轻重量。另一方面,保时捷工程部门正在研究如何在其电子驱动动力系统中实施新材料。采用结构优化技术结合GKN的材料,保时捷实现了差速器的独特设计(包括齿圈),通过这种齿轮减重和刚性形状的组合,实现了更高效的传动。

PBF技术还在催生下一代热交换器的发展,2019年GE宣布与马里兰大学和橡树岭国家实验室合作研发UPHEAT超高性能换热器,在两年半内完成开发计划,实现更高效的能量转换和更低的排放。GE希望新型换热器将在超过900°C的温度和高于250 bar的压力下运行,超临界CO2动力循环的热效率提高4%,在提高动力输出的同时减少排放。材料方面,这种新型换热器将利用独特的耐高温,抗裂的镍基超合金,这是GE研究团队为增材制造工艺而设计的材料。该热交换器包括多个增材制造方法,使流体通道尺寸较小,具有较薄的壁而形成的流体通路,以及具有错综复杂的形状,这些热交换器使用先前传统的制造方法无法制造出来。

发电领域,GE和西门子都通过3D打印制造技术,打破了自己的净效率记录。其中,GE在南卡罗来纳州格林维尔工厂的测试中以64%的联合循环效率击败了自身之前的设计。GE将HArriet效率的提升归功于“通过不断创新带来的燃烧效率突破”,而这里面的创新则离不开3D打印技术所制造的燃汽轮机的多个关键部件。GE通过金属3D打印技术制造设计优化的燃烧系统部件,实现了更复杂的几何形状,这使得 HArriet燃气轮机的燃料和空气的预混合得到改进,从而实现了燃气轮机发电效率的最大化。

除了带随形冷却通道的模具、带复杂内冷结构的刀具、带内部冷却流道的燃油喷嘴及发动机燃烧室等通过PBF成就的高附加值产品,制造复杂点阵结构成为PBF 金属3D打印技术的另外一大特色应用。2019年国际首个3D打印全点阵整星结构成功入轨的千乘一号整星结构是航天五院总体部机械系统事业部负责研制的,采用面向增材制造的轻量化三维点阵结构设计方法进行设计,整星结构通过铝合金增材制造技术一体化制备。传统微小卫星结构重量占比为20%左右,整星频率一般为70Hz左右。千乘一号微小卫星的整星结构重量占比降低至15%以内,整星频率提高至110Hz,整星结构零部件数量缩减为5件,设计及制备周期缩短至1个月。整星结构尺寸超过500mm×500mm×500mm包络尺寸,也是目前最大的增材制造一体成形卫星结构。

lattice_satellite_3航天五院总体部的点阵结构示意

此外,3D打印点阵结构还可以应用于高强度的压缩机部件制造。轻质、高强度的压缩机部件的主体部分带有点阵结构的内部区域,点阵结构由3D打印实现,主体部分还通过3D打印实现了内部流体输送通道,流体输送通道用于允许润滑油流过压缩机部件的主体部分。

不过点阵与3D打印的结合并非想像中那么轻松,这方面需要仿真软件来提高建模与制造的成功。国内经过多年的仿真计算积累和努力探索,安世中德团队开发出了一款专业用于增材点阵结构仿真分析的软Lattice Simulation[2]。基于多尺度算法,用户可以采用等效均质化技术对点阵结构进行有限元分析。并且提取非均质化点阵结构的等效材料参数,在均质化等效实体模型宏观力学分析后,可以通过局部分析对胞元结构进行详细的应力校核。

设计、软件和材料助力释放3D打印潜力,材料方面,不仅仅是高温合金、铝合金通过PBF工艺实现了零件性能的飞跃,使用铸铜转子的电动机可以帮助普通感应式电动机有效降低电动机的转子损耗,其他金属材料例如3D打印铜金属工艺,将有望解决电动汽车铸铜零件铸造和钎焊的挑战,替代铸造与钎焊,实现更经济更复杂更高效的铜零件生产,从而有望应用于例如转子、散热器、感应器等零件的制造中。

更多的案例在液压控制器、热交换器、汽车结构件、汽车轮毂、刹车系统、传动系统、飞机隔离舱结构等方面正在获得成功验证与推广。

值得注意的是我们目前聚焦的PBF金属3D打印主要是关注其在制造复杂的几何形状,轻量化,缩短交货时间,功能性一体化结构实现等方面的优势。而金属3D打印工艺的一个容易被忽略的潜力是通过快速定向凝固带来非常精细的晶体微结构并控制逐层外延生长。这为设计组件提供了新的可能性,此外,高冷却速度为合金设计开辟了新的可能性。而实验证明,通过金属3D打印实现凝固微观结构和相关的偏析结构可以带来非常精细的结果,与铸造微观结构相比要小100倍。因此,均质化热处理时间也显著的从几小时减少到几分钟。

虽然PBF金属3D打印吸引了金属3D打印业界极大的关注,不过每一种技术都有着其自身的局限性。例如,不锈钢的熔化温度可接近2500华氏度,想像一下当每个单独的3D打印设备都需要不断的消耗能源的时候才能实现零件的加工,整体来说对能源的消耗是不容低估的。除非,通过PBF技术所创造的综合效益如上所述的几个经典案例这么明显。

所以说,用于批量生产领域,目前PBF这样的高成本通常在加工通过传统方式难以加工出来的特殊零件的时候才有意义,包括那些具有极其复杂的内部通道的零件,以及喷气发动机燃料喷嘴和卫星组件等高端部件。

除了能源的消耗,PBF技术还受到了材料的限制和可加工尺寸限制、材料价格、过程中控制以及需要添加支撑结构等各种限制,各大研究机构正在专注于克服这些挑战推动PBF技术走向更广的普及化。当然,随着工艺的提升和通过软件对质量控制能力的提高,PBF技术也在不断地突破自身的局限性。在这方面,亚琛Fraunhofer ILT已经开发出5个振镜、可扩展的下一代选区激光粉末床金属打印技术,该解决方案还可以产生比传统LPBF系统快10倍加工速度的大型金属部件。不仅仅在LPBF(基于粉末床的金属熔化3D打印技术)方面获得突破,亚琛Fraunhofer的futureAM项目包含了其他的增材制造技术,在线过程控制技术的开发,工艺稳健性的开发,以及基于数字孪生的网络化流程链的开发等。

l DED

让我们把目光从PBF技术上切换到DED技术,DED直接能量沉积技术包括激光、等离子、电子束几种不同的热源,材料包括粉末或丝状两种主要的形态。金属材料在沉积过程中实时送入熔池,这类技术以激光近净成形制造(LENS)、金属直接沉积(DMD)技术为代表,由激光在沉积区域产生熔池并高速移动,材料以粉末或丝状直接送入高温熔池,熔化后逐层沉积,称之为激光直接沉积增材成形技术,该技术成形出毛坯,然后依靠CNC数控加工达到需要的精度。

DED技术的市场应用领域除了零件的修复,还包括大型结构件的制造,如飞机结构件一体化制造(翼身一体)、重大装备大型锻件制造(核电锻件)、难加工材料及零件的成形、高端零部件的修复(叶片、机匣的修复)等传统锻造技术无法做到的领域。当然,随着这一技术在工艺控制方面走向成熟,其应用的想象空间将更大。

国内,安世亚太与中科煜宸联合开发了面向金属增材制造定向能量沉积工艺的专业工艺仿真软件AMProSim-DED。使得我国在激光近净成形制造技术的可扩展性方面实现了华丽升级。

2020年,市场上已经在谈论大功率EHLA沉积速率超过2m²/ h的加工速度。凭借EHLA工艺,Fraunhofer表示,该工艺对当前抗腐蚀和磨损保护的加工工艺具有改进作用。由于硬铬电镀消耗大量能量并且具有粘合和孔隙率的缺点,而热喷涂在所用材料方面可能相当浪费。相比之下,EHLA方法加工出来的涂层是无孔的,从而改善粘合情况并降低裂纹和孔隙的发生的可能性。除此之外,根据Fraunhofer,EHLA技术比热喷涂节约90%的材料。

Video Cover_FraunhoferFraunhofer激光技术研究所的超高速激光材料沉积技术

l 3D打印砂型或熔模+铸造

无论是PBF还是DED技术,都属于直接金属3D打印的技术范畴。市场上还活跃这间接实现金属零件3D打印的途径,一种是通过3D打印砂型或熔模再通过铸造的方式成就复杂的零件,这方面以德国voxeljet-维捷的工业级3D打印技术为代表,国际上有知名汽车厂家采用了这一3D打印技术制造S58发动机缸盖的铸造砂芯,以满足轻量化以及热管理性能的需求。

l Binder Jetting

另外一种名为binder jetting的金属3D打印技术,通过将金属粉末与粘结剂层层粘结成为零件毛坯,再经过脱脂烧结过程制造成金属零件的间接金属3D打印技术。这种生产系统与MIM金属注射成型工艺颇有近亲的感觉,然而其制造过程中并没有使用模具。这种技术将使制造商能够显着降低其成本,从而使该技术成为铸造的替代技术。

在这方面,大众汽车上将使用惠普的金属3D打印技术,首先是进行大规模定制和装饰部件的制造,并计划尽快将Metal Jet金属3D打印的结构部件集成到下一代车辆中,并着眼于不断增加的部件尺寸和技术要求。

block 价值创造驱动转型

总体来说,如今的3D打印技术发展程度,在技术层面上速度远超我们的想像,具备了在很多应用层面颠覆的潜能,我们如何理解每一种3D打印技术的优势则需要跟应用行业的需求想结合,拿汽车产业来说,3D打印目前无疑在100万-200万价位的车型上展开了产业化的应用,那么这样的发展趋势将在什么样的时间节点发展到50万价位的车型?当发展到20万-30万价位的车型的时候,占据主流的3D打印技术又将是哪一种类别的3D打印技术?这需要对技术本身和应用行业的发展都具备一定的理解和判断能力

那么制造业如何驾驭3D打印技术,成为第四次工业革命的赢家呢?在这里,我们需要理解的是一切并不像购买几台3D打印设备那么简单。

企业制造转型是由价值创造驱动的,3D打印技术成就“复杂”产品的优势,例如通过3D打印实现了更复杂的外形,将原来十几个零件简化为1个零件,体积和重量大大缩小;或者是通过3D打印实现了材料的冶金性能的提升,再或者是制造出梯度合金等材料;再或者是实现了更高的产品性能,提升了产品生命周期的附加值。3D打印从应用端创造价值,从而从产业链的价值赋能角度倒逼制造工艺向3D打印转移。而创建竞争优势的关键是设计和材料。为增材制造而设计的增材思维-DfAM正在全球范围内建立。其中仿真驱动设计成为“玩转”3D打印的关键点之一。

每一个企业的转型都是非常艰难的选择,没有一个企业可以从一个山头直接”跳到”另外一个山头,这需要有一个”下山”和重新”上山”的过程。传统汽车从设计定型到第一辆汽车出厂大概需要三年左右的时间,在此期间所有的汽车零件都不允许改变设计,而在电动汽车发展的时代,例如特斯拉汽车几乎每个月都会有一次软件的自动更新,相对固化的体系成为了传统汽车厂商的阿克琉斯之踵。寻求突破,成为传统车厂转型的当务之急。

陷入牵一发而动全身的陷阱,这不仅仅是汽车行业面对的挑战。大型制造公司普遍拥有数十年以传统方式开展工作的经验。所有的流程、设备、培训以及最重要的预算都集中在传统流程上。这时候出于自身的短期发展资金安全角度,也会本能的拒绝新的想法。

此外,将新的制造技术融入关键制造工艺是一项重大任务,因为无论工厂发生什么,客户都必须继续获得高质量的产品。没有一家制造企业能够做到停止目前的生产,而去探索未知世界的“滩头阵地”,

由于存在未知风险,而克服这一初始步骤所需的现金和资源有时非常庞大,以至于车厂不愿意甚至无法继续进行这样的探索。这使得不仅仅供应链成为障碍,资金投入成为另外一个因素使得制造业企业陷入牵一发而动全身的陷阱。

block 转型路径

缓解转型过程中的阵痛,制造企业可以尝试建立3D打印实验室连接内外部资源。3D打印实验室能够更好地完善现有的3D打印方法并为推广3D打印技术做准备,同时创建度量标准,重点改进设计创新,健全关键流程标准化,并重点改进质量和检验流程。3D打印实验室还可以作为供应链合作伙伴的培训机构或体验中心,并为企业内部的团队提供培训机会。

有了思维的突破和硬件的准备是第一步,企业还需要建立正向设计能力,这么多年国内很多企业并不是很担心技术上的跟进,因为只要别人有了,拿来逆向一下,再放到国内巨大的市场,结合价格优势,就可能创造赶超别人的市场机会。然而,逆向设计的惯性是很致命的, 3D打印的设计与制造的结合将不是那么容易被逆向,尤其是对于一些设计上非常复杂的产品来说,正向设计是唯一出路。

走出逆向设计困局,国内可以借鉴欧洲Fraunhofer的发展模式,建立对外研发商业模式的合作,制造企业在一个良性的研发创新支持的环境下,向企业外部寻求颠覆性创新支持,实现多赢、优势互补的发展。

他山之石可以攻玉,无论是研发还是产品制造,企业在发展过程中,除了加强自身的创新实力,寻求与市场上的优势资源相结合是另外一条加快发展的路径。在这里,Fraunhofer弗劳恩霍夫IPT工业生产技术研究所,ILT激光研究所,RWTH亚琛工业大学等增材制造研究领域集中优势的研发资源,通过亚琛增材制造中心(ACAM),连接增材制造研发领域的中坚力量,在全球范围内为制造企业提供欧洲领先科研机构多年来积累的增材制造专业技术,并通过社区、联合研发、以及专业教育服务,帮助企业应对增材制造技术在应用中的挑战。

虽然3D打印迈向产业化的过程中遇到了一系列的难题,例如通过信息管理系统来管理增材制造数据流;工艺可重复性、零件到零件的可重复性;成熟的认证和质量检测方法。在这方面,得益于从设计、生产规划、生产工程、生产实施到服务的全价值链的数字化。

幸运的是,我们即将迎来5G时代的到来,5G允许高密度数据的无缝互联和实时沟通,也就是Real Link-实时链接,对生产的控制是 Real Moment-实时控制,对技术的组合柔性能力是Real Combination-实时组合, 对产品的实现可以Real Personal-实时个性化。

国际上,德国Fraunhofer弗劳恩霍夫IPT工业生产技术研究所携手爱立信、亚琛工业大学启动了欧洲最大的5G数字制造工业园示范项目,旨在在制造业环境中引入新的移动无线标准。快速的5G数据传输可将所有生产和传感器数据存储在包含完整生产历史记录的数字孪生体中。

通过将自动化、数字化以及人工智能、边缘计算、5G和区块链等尖端技术无缝融合,可将海量数据全面转化为宝贵的知识与技术,阔步迈入数字化转型的全新阶段。我们相信有一天,3D打印用于零件的生产将是全流程数字化的,质量稳定的,产品信息可追溯的。在这个基础上,3D打印技术由于其天生的数字化特征可以说是最为贴合动态供应链的制造技术。数字孪生体技术使得复杂的3D打印过程变得轻松,从而减少故障,提高零件质量并更智能地使用材料

block 展望

随着中央政治局常委会会议提出“加快5G网络、数据中心等新型基础设施建设进度”,顶层设计为新型基础设施建设按下“加速键”。可以预见,在更强大的新基建基础设施上,软件将在我国的工业制造环境中获得前所未有的良性发展生态环境。

3D打印重塑制造模式与商业模式的时代正在来临,从制造到创造,相信我国的制造业将借助新技术和国内外优势科研资源的东风,走上一条更为强健的自主与合作创新发展道路

参考文献:
[1]专利.FuelNozzle for a Gas Turbine Engine.专利:US 10591164B2, 2020.3.17.

[2]段卫毅.多尺度算法在增材制造点阵结构仿真分析中的应用,3D科学谷.20181129.

* 本文发表在机械工业信息研究院主办的《金属加工》杂志上

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=20359 0
12台金属3D打印设备助力穆格实现液压元件性能升级 //www.ganjiayu.com/?p=16972 //www.ganjiayu.com/?p=16972#comments Sun, 29 Sep 2019 07:31:36 +0000 //www.ganjiayu.com/?p=16972 3D打印在流体动力部件制造中的应用日益广泛,液压元件是其中一个应用方向。

工程和制造公司穆格(Moog)是设计、制造和销售高性能液压阀产品的领导者,在航空航天领域尤其活跃。穆格建立了内部增材制造中心,中心拥有12台粉末床选区激光熔化金属3D打印设备,以及近10台非金属3D打印设备。在过去的十年中,穆格一直通过研发中心、计量与材料分析实验室、应力消除热处理炉来开展增材制造液压元件的设计、生产、后处理以及检测工作。

Moog穆格增材制造中心的金属3D打印设备。
来源:Fluid Power World

block 制造与传统产品不同的液压元件

穆格自2013年成立第一个研发中心以来就一直积极从事金属增材制造业务。后来穆格决定将两处增材制造设施进行合并,在2018年成立了新的增材制造中心,从而提高利用增材制造技术进行创新的能力。

穆格的产品组合中有大量的液压产品,因此增材制造中心开展了金属3D打印技术在液压元件制造中的应用。

 Part_Hydra_Moog穆格开发的金属3D打印液压元件。来源:穆格

例如,穆格通过金属3D打印设备直接制造集成流体通道的液压歧管,这是传统制造方法无法实现的。穆格专为增材制造而设计的液压歧管,将多个组件集成为一个整体设计,具有显著的重量减轻与紧凑的尺寸,并具有更高的流动性能。在制造过程中,功能集成的设计,消除了零件焊接需求。

另一个典型应用案例是通过金属3D打印技术制造扰流板伺服控制制动器中的液压油缸,材料为15-5PH不锈钢。穆格基于一个不锈钢锻造件进行重新设计,3D打印液压油缸的制造时间缩短至一周内。

穆格还与意大利理工学院(IIT)合作,为HyqReal机器人开发了集成智能执行器(ISA ),增材制造的智能执行器满足了机器人制造的轻量化和紧凑设计的需求。

穆格在应用探索中发现,目前金属3D打印技术最适合在需要成本和交货时间优势的应用中使用,此外,该技术在产品性能优化方面也起到了积极作用。穆格在设计增材制造液压元件时优化了散热性能,创建具有更好散热性能或隔离热量的产品。

在掌握增材制造优势的同时,穆格发现液压零部件制造所用的粉末床金属3D打印技术仍存在难以满足液压件制造需求之处。比如说在表面光洁度方面无法直接满足制造需求,穆格在增材制造完成后将进行表面加工。而对于后处理的需求,穆格通常会在产品设计时就进行权衡,尽量通过增材制造设计原则减少对后加工的需求。

穆格看到了增材制造技术在交货时间、减轻重量、性能优化和复杂液压组件制造成本方面所具有的优势,他们将金属增材制造视为一种正在增长的液压元件制造方式,并投入很多时间完善液压元件的增材制造工艺,生产质量可重复、能够承受流体高压应用的增材制造液压产品。

block 3D科学谷Review

正如穆格在实践中所体会到的那样,增材制造技术在实现液压元件轻量化、提高流动效率、无模具、可快速迭代等方面具有优势。

hydraulic whitepaper 113D打印在液压领域应用的五大优势
来源:3D科学谷《3D打印与液压行业白皮书1.0

这一切看似简单,但实践过程并不容易。液压制造商必须考虑流体、压力所带来的设计复杂性,考虑如何在系统内部定位歧管,内部支撑的放置位置等众多因素。对于液压制造商而言,应用增材制造技术的更大难处在于,如何制造根据“增材制造设计思维”开发液压元件。

传统液压元件与3D打印液压元件在设计上有着显著的不同。以液压阀为例,传统液压阀块为规则的长方块状结构,而3D打印液压歧管带给人的最直观印象是不再是规则的阀块,而是一组具有不规则形状的“管道”。

传统加工方法的制约某种程度上使得流体与结构拓扑优化后的液压零部件加工制造遭遇一定的难度,而仿真技术与3D打印-增材制造技术结合,正在突破着传统液压元件设计思维与制造的局限性,并推动液压元件设计优化与性能升级。

3D科学谷曾在.专栏仿真技术与3D打印推动液压元件性能升级》中,介绍过仿真技术如何在3D打印驱动液压元件性能升级的道路上发挥“助推器”的作用。随着3D打印-增材制造技术的不断成熟和应用,通过CFD和FEM在制造前预测性能、优化设计并验证产品行为,泵、阀等零件经过结构流体特性拓扑优化、结构拓扑轻量化以及尺寸优化设计之后通过增材制造技术加工出来。CFD、FEM技术与增材制造技术相得益彰,互相成就,共同推动液压零件实现性能升级。

— —

更多最新3D打印行业发展态势,敬请参加TCT深圳展(2019年10月15-17)期间的论坛,详细倾听3D打印领域的分析专家Chris Connery (CONTEXT公司全球副总裁),Filip Geerts(欧洲机床工业及相关制造技术协会总干事), 王晓燕 (3D科学谷创始人)共同为您带来的全方位的剖析与灼见。

报名论坛并缴费,请即刻扫描图片上方二维码

TCT shenzhenTCT 深圳展会期间的TCT论坛-行业透视Section

3D打印与工业制造登陆京东网上书店,点击微课视频收看超过14万人观看的3D科学谷创始人微课

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.ganjiayu.com
在首页搜索关键词 网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=16972 0
3D打印与液压行业白皮书1.0 //www.ganjiayu.com/?p=14049 //www.ganjiayu.com/?p=14049#comments Fri, 04 Jan 2019 05:53:31 +0000 http://www.51shape.com/?p=14049

 

谷白皮书是基于3D科学谷使命:提供有价值的洞见,并结合相关社会资源转化为驱动产业发展的力量。结合3D科学谷所拥有的国际化的资源,基于精湛的制造业专家智囊网络,3D科学谷在中国市场建立了增材制造洞察力体系,并通过近年来的市场研究和分析工作推动了中国市场在实施方面的进展。

2018年,中兴遭遇芯片危机给国内其他科技厂商敲响了警钟,面对升级的贸易摩擦,国内芯片产业存在哪些短板?国内芯片厂商与国际巨头差别有多大?国内通信企业有能力度过这次危机吗?

其实国内的关键短板不仅仅是芯片,拿液压控制器来说,我们可能需要像对待芯片一样的态度来审视液压控制产品的作用-“给我一个支点,我能撬起整个地球”,虽然液压件的工作原理与杠杆原理并不相同,然而重要性是类似的,液压控制器对于很多机械来说,作用就像这个支点一样,起着对设备性能关键的决定作用。

在过去5年中,国际上已有少量著名液压制造商和制造业用户在积极应用增材制造技术。我们看到空客公司在推动利勃海尔3D打印飞机扰流板液压件研发项目中所起到的积极作用;了解到意大利赛车制造企业在赛车中使用增材制造的液压系统;也看到了著名先进液压件制造企业穆格在复杂液压件设计创新与增材制造发面所做的全面探索,还看到著名液压传动和控制系统制造商派克汉尼汾在其在总部附近开设了可以探索增材制造技术的“先进制造学习和开发中心”。

而在3D科学谷看来,液压、散热器、叶片、随形冷却模具,这是几大正在与金属3D打印技术进行深度结合的应用。因为这些产品都有着特殊的内部结构,传统的加工方式需要牺牲掉产品的性能来满足加工要求,要达到最佳的产品性能,优化的结构通过传统方式是很难实现的。

产业化前景方面,利勃海尔为空客A320 3D打印的飞机扰流板液压件已经被验证成功并随着飞机飞入天空,这样的产品通过3D打印实现量产的目标指日可待。

pdf版本白皮书资料下载,请加入3D科学谷3D产业链QQ群:529965687

hydraulic whitepaper 1

hydraulic whitepaper 2hydraulic whitepaper 3hydraulic whitepaper 4hydraulic whitepaper 5hydraulic whitepaper 6hydraulic whitepaper 7hydraulic whitepaper 8hydraulic whitepaper 9hydraulic whitepaper 10hydraulic whitepaper 11hydraulic whitepaper 12hydraulic whitepaper 13hydraulic whitepaper 14hydraulic whitepaper 15hydraulic whitepaper 16 hydraulic whitepaper 17 hydraulic whitepaper 18 hydraulic whitepaper 19 hydraulic whitepaper 20hydraulic whitepaper 21 hydraulic whitepaper 22 hydraulic whitepaper 23 hydraulic whitepaper 24 hydraulic whitepaper 25hydraulic whitepaper 26 hydraulic whitepaper 27 hydraulic whitepaper 28 hydraulic whitepaper 29 hydraulic whitepaper 30hydraulic whitepaper 31 hydraulic whitepaper 32 hydraulic whitepaper 33 hydraulic whitepaper 34 hydraulic whitepaper 35hydraulic whitepaper 36 hydraulic whitepaper 37 hydraulic whitepaper 38 hydraulic whitepaper 39 hydraulic whitepaper 40

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=14049 0
案例 l 创成式设计软件如何衔接3D打印与CNC机加工 //www.ganjiayu.com/?p=12367 //www.ganjiayu.com/?p=12367#comments Wed, 27 Jun 2018 06:21:12 +0000 http://www.51shape.com/?p=12367 3D打印-增材制造(AM)正在快速发展,这背后的驱动因素是3D打印释放了设计的自由度,所以我们需要重新想象我们的设计以适应新的生产潜力。

最近,通用汽车采用欧特克(Autodesk)的创成式设计软件对车内零部件进行优化设计,通过使用欧特克创成式设计技术的Fusion 360 Ultimate软件包,用于胞元优化和金属增材制造模拟的Autodesk Netfabb,以及该公司的Alias,Recap Pro和Meshmixer等软件,通用汽车发现从创成式设计中所获得的好处远不止轻量化。

autodesk_netfabb_generative_1

通用汽车和欧特克在通用汽车密歇根州沃伦技术中心重新设计了汽车座椅支架 – 座椅安全带固定部位。只需要定义零件需要实现的性能参数(包括所需的连接点,强度和质量),欧特克的创成式设计软件就产生了超过150种有效的设计选项,新设计比原来的部件轻40%,强20%,并将八个不同的部件整合到一个增材制造部件中。

那么在迈向增材制造之路,还有一个不容忽视的细节是需要考虑增材制造与减材制造的结合。

液压歧管的增材制造挑战

很多人认为增材制造和减材制造是竞争技术,而忽略了他们之间的互补性,其实在大多数情况下,必须通过减材制造的后处理与金属增材制造的组合才能完美的加工出符合要求的零件。

autodesk_netfabb_generative_2

根据行业数据,选择性激光熔融零件的通常表面粗糙度值在15μm和40μm之间(根据Metal-AM.com)。根据应用的不同,例如图片中的液压歧管零件的很多关键部位的几何精度需要通过机加工来完成精加工或通过抛光来达到精度要求。

另外,为了满足孔加工的需要,例如螺纹孔则需要后续的钻孔和攻丝加工。

需要考虑减材制造的约束条件,这就对创成式设计带来一些额外的挑战,你需要考虑:

1.如何连接增材制造和减材制造?

2.如何通过创成式设计进行后期处理?

3.在减材制造的后处理加工过程中,如何装夹这些零件?

4.如何针对坐标系调整这些零件?

加工挑战,软件来化解

无论无何,对于减材制造来说,目前机加工设备需要的是基于CAD模型的编程语言,机加工设备无法理解增材制造设备所使用的STL格式。所以Autodesk Netfabb和Autodesk创成式设计在Fusion 360解决方案中考虑到这一因素,通过Mesh-to-BRep功能,Autodesk的创成式设计软件可以创建一个用于CAD准备的SAT文件。

autodesk_netfabb_generative_3

关于加工余量,软件也可以提供规划,例如,对于铝,钛,不锈钢和铬镍铁合金,通过在创成式设计过程中将加工余量设置好,可以方便工程师在随后的减材加工中不会被这个问题所干扰。

autodesk_netfabb_generative_4

当然,另外一个重要的考虑因素是工件在后续机加工过程中的装夹问题。通过创成式设计软件可以创建3D打印的Conformal Jaws作为夹持部位。案例中的液压歧管零件的设计通过雷尼绍加拿大解决方案中心进行了后续装夹方面的调整,3D打印的保形卡爪用于紧固住3D打印的零件在后续的精加工过程中的零件位置,对齐方式为WCS(工作坐标系统)部分。

 

autodesk_netfabb_generative_5

在Autodesk Fusion 360中,可以创建创成式设计的零件,可以通过CAM软件来生成后续机加工的策略,并生成CNC刀具路径程序。

autodesk_netfabb_generative_7 autodesk_netfabb_generative_8 autodesk_netfabb_generative_9

图片:经过CNC机加工后的液压歧管零件,金属3D打印过程通过雷尼绍的AM250完成

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

]]>
//www.ganjiayu.com/?feed=rss2&p=12367 0
穆格MOOG推进铜3D打印的应用开发 //www.ganjiayu.com/?p=11336 //www.ganjiayu.com/?p=11336#comments Mon, 05 Feb 2018 04:02:43 +0000 http://www.51shape.com/?p=11336 60多年来,穆格的运动控制技术已经被广泛应用于民用机座舱、发电风机、一级方程式赛车、医用输液系统等众多的市场和应用领域,有效提高相关产品的性能。 从创立到渗透到新的前沿应用领域,穆格已经培养了深入企业文化的“搬着石头过河”的开拓精神。

现在,穆格着眼于在提高金属增材制造(金属AM)方面的工艺知识和冶金理解以引领行业的发展,穆格宣布将铜应用添加到其客户可用的日益增多的产品清单中。

moog

图片:金属3D打印的铜零件,来源穆格

穆格表示由于铜具有出色的传热特性和导电性,铜元件的热稳定项目引起了很大的兴趣。与传统的铣削和车削相比,将金属增材制造的所有优点结合在一起,消除了设计限制,扩大了部件配置选择范围,对于特定部件来说,铜成为一个非常令人兴奋的选择。

流程开发是穆格持续的使命,穆格正在改进对铜的工程和冶金的理解,而不仅仅是关注穆格客户当前想要的材料。

铜金属的加工不仅仅涉及到穆格对其直接金属激光熔融设备的增材制造工艺的理解,对于铜金属的后处理能力和其他加工能力也是十分重要的。在3D打印过程中由于铜可以反射激光能量,简单地提高功率也会带来加工挑战。 在后处理过程中,通过HIP(热等静压)和热处理来满足铜零件所要求的性能参数,这一切都在不断的探索和不断的完善过程中。

穆格的努力是基于其雄厚的制造基础的,在传统的减材制造过程中,通过多年的经验,穆格了解了加工工艺、热处理、铸造和锻造工艺对材料性能(包括损伤容限和疲劳寿命)的影响。其中,损伤容限(damage tolerance)是一种较新的结构设计理论。该理论假设,任何结构材料内部都有来自加工及使用过程的缺陷,而设计者的任务是利用各种损伤理论(如断裂力学)以及给定的外载荷,确定这些缺陷的扩展速度以及结构的剩余强度。 对于经受变化载荷的结构,如飞机、轮船、车辆等,损伤容限设计要结合无损探伤技术和疲劳理论,提供结构的检验期限,以保证结构中存在的裂纹在该期限内不会扩展为临界裂纹。 由于微缺陷是无处不在的,而结构的疲劳破坏往往是从微缺陷开始的,因此,对于飞行器的强度安全性分析已经逐步由静、动、疲劳强度强度转移到损伤容限分析。这也是NASA、FAA等机构对于飞行器强度认证的主要考评内容。

为此,穆格制订了自己的增材制造标准被成为Moog Standards,这个内部标准也被称作工艺规范矩阵。有了这些过程和支持数据在手,穆格就可以进一步将金属3D打印推向更加深入的航空硬件制造来。

-3D科学谷Review

3D打印铜合金零部件是航空制造业所重视的领域。根据3D科学谷的市场研究,2015年,美国航天局NASA 在铜质发动机燃烧室内衬3D打印方面也取得了突破,打印材料为GRCo-84铜合金,它是在NASA在俄亥俄州的Glenn研究中心开发出来的一种铜合金,打印工艺也是选择性激光熔化。燃烧室衬里的3D打印总共为8255层,仅这一个部件打印时间为10天零18个小时。这个铜合金燃烧室零部件内外壁之间具有200多个复杂的通道,制造这些微小的、具有复杂几何形状的内部通道,即使对增材制造技术来说也是一大挑战。在国内,西安铂力特已研制出针对难熔金属和高导热、高反射金属的3D打印工艺,突破了铜材料的激光成形技术,实现了复杂流道的铜材料制造工艺,成功制备出3D打印铜合金尾喷管。

铜的3D打印充满挑战,由于铜的导热性和反射性极佳,这使得铜金属在3D打印机内部难以操作。虽然当前选择性激光熔化(SLM)3D打印技术可以用于制造铜金属粉末材料。但是铜金属在激光熔化的过程中,吸收率低,激光难以持续熔化铜金属粉末,从而导致成形效率低,冶金质量难以控制等问题。此外,铜的高延展性给去除多余粉末这样的后处理工作增加了难度。

在新一代RL10发动机研制过程中,Aerojet Rocketdyne 使用粉末床选择性激光熔化3D打印技术制造了铜合金推力室部件。这个3D打印部件与2017年4月通过了美国Defense Production Act Title III项目管理办公室进行的点火测试。相比传统的制造工艺,选择性激光熔化3D打印技术为推力室的设计带来了更高的自由度,使设计师可以尝试具有更高热传导能力的先进结构。而增强的热传导能力使得火箭发动机的设计更加紧凑和轻量化,这正是火箭发射技术所需要的。但Aerojet Rocketdyne在获得这个铜合金推力室部件的过程中也遇到了不小的挑战,铜金属在激光熔化的过程吸收率低,激光难以持续熔化铜金属粉末,从而导致成形效率低,冶金质量难以控制。

2017年,Fraunhofer ILT推出了用于铜金属3D打印的“SLM绿色”项目,在绿色激光器中,与1μm波长的波长相比更短,波长在515nm。根据ILT“这意味着更少的激光功率输出,此外,激光束可以更精确地聚焦,使其能够使用新的SLM工艺制造更加精细的部件。

参考来源:穆格
文件下载,请加入3D科学谷QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=11336 0
正在发生的趋势,通过金属3D打印制造更好的液压零件 //www.ganjiayu.com/?p=11191 //www.ganjiayu.com/?p=11191#comments Mon, 22 Jan 2018 01:53:14 +0000 http://www.51shape.com/?p=11191 液压系统可以作为动力传动方式,也可用作控制方式,在工业领域中的应用非常广泛,例如机床、工程机械、农业机械、汽车、飞机等机械,水利工程用的堤坝装置,发电厂发电厂涡轮机调速装置,以及军事工业中火炮操纵装置等领域都会应用到液压系统。

市场研究机构Infinium Global Research预测从2017到2023,3D打印市场将保持33%左右的年复合增长率,而在业界人士看来,液压零件的3D打印将成为一个不可忽视的3D打印应用增长领域。

3D打印技术已成为多家液压系统制造商制造复杂液压零部件的选择,例如,工程和制造公司穆格MOOG,在金属3D打印液压零件领域的有着超过16年的探索经验,2017年另一家液压传动和控制领域的著名制造商派克汉尼汾(Parker Hannifin)在总部附近开设了“先进制造学习和开发中心”,工程师可以在该中心探索增材制造/3D打印的应用。

Parker AM Facility

2017年,雷尼绍还帮助路虎BAR帆船通过金属3D打印的液压系统零件提升性能,加工出内含光滑圆角的零件,大大提高流体传输的效率。

land-rover-bar_3d-printed-parts

可以说金属3D打印在液压领域的应用正在像其在随形冷却模具领域的应用一样不断的深化。

3Dhydraulics

液压-更加高端的应用

-- 3D打印液压件积极的探索者

根据3D科学谷的市场研究,如果选择金属3D打印技术来制造液压阀块,在进行产品设计时无需考虑交叉钻孔的设计约束,并且可以将锋利的角换成圆形弯曲的设计从而减少湍流现象。这种通过传统液压阀块制造技术无法实现的设计方案,通过金属3D打印是可以实现的,Aidro hydraulics 公司也正是通过3D打印技术获得了更高的设计自由度。

aidro 1

Aidro Hydraulic公司1982年成立,成立以来一直专注于设计和生产液压系统中的零部件,所推出的液压阀体产品包括方向阀、止回阀、流量阀、压力阀和比例阀。2017年,Aidro Hydraulic 在35年液压零部件传统制造经验的基础上正式推出了金属3D打印的液压产品,其中包括3D打印的液压阀体。

aidro valve

完整的液压系统包括动力元件、执行元件、控制元件、辅助元件和工作介质。控制元件(即各种液压阀)在液压系统中起到控制和调节液体的压力、流量和方向的作用。Aidro hydraulics成功开发的首个3D打印液压阀块,制造材料是不锈钢,作用是控制单作用气缸。Aidro hydraulics 在设计3D打印阀块时进行了创新,液压阀块的内部管道经过了设计优化,使内部管路中的液流得到改善,整个阀块的体积也比传统设计的阀块更小了,潜在的液体泄漏问题也得以避免。在商业化方面,Aidro hydraulics 使用金属3D打印技术为一些有特殊需求的客户定制化生产小批量的液压阀块,作为其现有液压零部件生产能力的一种补充。目前,不锈钢(从AISI 304 到 316L)、铝、钛,以及部分新材料的阀块都能够通过3D打印设备进行小批量生产。

aidro valve
图片:机加工生产的阀体(左),具备更好性能的3D打印生产的阀体(右)

国际上,另外一家公司,Domin Fluid Power也是3D打印液压领域的积极探索者。Domin Fluid Power制定了新的流体动力产品“稳定”设计的战略,这个战略建立在以金属3D打印技术作为制造方式的基础上。在此基础上,Domin公司对一些多年来都没有什么明显改变的液压流体动力零部件进行了重新设计与制造,包括直接驱动伺服液压阀。

hydraulic_1

Domin Fluid Power重新设计与制造的3D打印直接驱动伺服液压阀,经历了上千小时的设计、分析、测试和评估。Domin Fluid Power表示重新设计的3D打印阀体在重量、体积上都得以降低,由于液压阀体压力损失的减少,阀体效率也得以提升。

-- 机加工、检测技术一个都不能少

不过金属3D打印在液压零件方面的应用还需要与机加工以及热处理等后处理工艺相结合才能真正达到零件的性能要求。宾夕法尼亚大学的Timothy Simpson教授曾制造了一个带复杂内腔结构的液压零件,这个零件是用Inconel 718合金制造而成的,在3D打印完成后,多轴CNC加工中心为精加工关键特性提供了高度的精度,这个特殊零件需要精确的外径,以确保跟其他零件能成功安装在一起, 为了正常运转,表面光洁度也是另外一个重要的关键质量要求。圆柱体的顶面和底面存在临界平面度和平行度的精度要求,这都需要通过机加工来实现。 最后,流体端口必须承受10,000psi的压力,这需要进行精密的螺纹磨削操作。

penstate_1

先进的检测技术也同样不可或缺,拿宾夕法尼亚大学的Timothy Simpson教授所完成的这个液压零件来说,为了确保内部结构的正确性,宾夕法尼亚大学和Imperial机床工具公司通过计算机断层扫描系统和其他先进的设备来完成零件内部的检测。最后获得的零件比原来的设计减轻重量超过40%,同时提高了流体流动性能。

3Dhydraulics_penstate

此外,很多液压零件需要锻造件的致密度,虽然热处理可能会带来一定的几何变形,但是热处理对于获得更加致密的液压零件是不可或缺的,3D科学谷认为如何将3D打印技术与热处理技术结合起来,这对于液压零件的制造非常重要。

-- 目标:量产

在3D打印液压零件实现量产方面,根据3D科学谷的市场研究空客可谓是个野心勃勃的实践家,2017年3月30日,空客装载了首个3D打印液压件的A380飞机已试飞成功,这让空客看到了通过3D打印提高液压零件性能的机会。不过这个零件的制造过程是充满探索与曲折的,扰流板液压件是一个关系到飞机安全的关键部件,它的作用是控制空气断路或者扰流板。

airbus 3d printed hydraulic parts

在七年的研发过程中,这个项目组一直针对金属3D打印这一增材制造技术而进行扰流板液压件的优化设计。3D打印的材料是Ti64钛合金,3D打印液压件的明显优势是轻量化,其重量相比原来液压件减轻35%。在性能方面,3D打印的液压件使液压系统的效率得以优化,产生更少的热量,降低噪音,同时对液压动力的要求更少。而液压系统效率的提升,将为飞行带来附加效益,例如减少空气阻力以及优化飞机的燃油效率。

3D打印液压件的研发和测试过程是漫长的,通常为了保证飞行安全,即使是由传统制造方式制造的液压零部件也需要经过1200万个测试周期,3D打印液压件也同样需要经历这样一段测试周期之后,才能够进行飞行测试。

对于这个3D打印扰流板液压件,空客的最终目标是实现量产。参与项目的成员德国利勃海尔集团是空客的一级供应商,该公司与2016年年底向空客交付了3D打印液压件。利勃海尔的专家曾表示,对于航空3D打印液压件他们还有更多的设计思路,接下来他们将会进行首轮测试。未来,他们将建立一个增材制造工厂,量产这些液压件。

-- 当前的可操作性

当然,实现量产的路或许还很长,意大利Aidro Hydraulic给出了当前3D打印应用到液压零件的参考因素。

生产数量:传统制造技术适合大规模生产,对于小批量的复杂液压件3D打印技术则更经济。

交期:用CNC机床加工金属棒料,制造周期为30-60天;如果是对液压铸造件进行加工,那么从铸造到完成加工的周期为6-12个月;用金属3D打印技术制造复杂液压件的周期可以缩短至几天之内,如果打印件需要进行机加工,则周期需要增加1-2周。

材料选择:液压零部件的制造材料必须具有足够的强度和耐腐蚀性,才能安全地应对液压系统的高压,传统液压技术中最常用的材料是碳钢,不锈钢和铝。 金属3D打印设备可加工的材料包括:不锈钢(AISI316L)、铝、钛(Ti6Al4V)、铬镍铁合金(625或718)、马氏钢…

原型设计:如果客户要制造的液压件是用于设计验证的原型,那么,金属3D打印技术则更具灵活性,它的价值在于可以短时间内同时打印出不同型号的设计原型。

—- 3D科学谷Review

3D科学谷的创始人曾经与国内不少的液压零件制造商接触过,当前3D打印在国内的液压领域的应用还处于空白,在3D科学谷看来,这主要源自于两方面原因。

一是我国不少关键的液压零件制造水平落后于国际水平,长期以来我国在打破关键液压零件依赖进口方面做出了不断的努力,但是追赶这个差距的本身就消耗了大量的精力和财力,这使得企业很难顾及像国外企业这样花费长达十几年的时间探索3D打印技术与液压零件的制造技术的结合。

二是对于成熟的液压产品来说,尤其是航空航天和国防军工领域,不仅仅缺乏对3D打印技术的掌握,国内企业还缺乏整套的思路如何通过3D打印技术来制造出满足复杂且严苛的军标液压产品。根据3D科学谷的市场研究,在这方面,制造型企业呼唤3D打印企业的全套培训与打印服务体系,只有双方携手,才能探索出切实可行的方案。

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=11191 0
案例 l 金属3D打印如何实现径向柱塞泵的创新? //www.ganjiayu.com/?p=10856 //www.ganjiayu.com/?p=10856#comments Mon, 11 Dec 2017 01:00:43 +0000 http://www.51shape.com/?p=10856 金属增材制造(AM)技术为流体动力行业的设计开创了许多新机遇,使得重新设计这些产品成为可能,从而创造出最新的“最先进”的产品。 不仅满足航空航天领域轻量化的需求,还满足其他工业领域更高的经济性的需求。

hydraulic_1

实现传统制造所不能及

传统上,流体动力行业的产品应用可以按照不同的市场领域来看,粗略的分类包括航空航天和其他工业,而不同的市场应用,对流体动力的产品功能诉求也有差异。

为了达到轻量化的目的,航空航天领域的产品必须使用高成本的原材料,如钛和如球头铣削这样昂贵的表面加工, 这样做的结果是更昂贵的产品。

可以说航空航天对轻量化的产品更加青睐,而其他工业则对轻量化的敏感程度要低很多。 不过在流体动力产品方面,还是有很多共同的要求,如性能、效率和可靠性。

很多时候,我们关注3D打印技术是因为这种技术可以为重要的行业尤其是航空航天行业提供潜在的价值优势,所以我们的视线围绕着航空、航天和国防领域的需求来挖掘3D打印的潜力,从而我们容易忽略那些对制造成本比较敏感的应用市场(如汽车、工程机械等行业)的潜在利益。

不过有时候3D打印不仅仅可以满足航空航天行业的需求,也可以满足其他工业领域的需求。3D科学谷以电液伺服阀(EHSV)为例,电液伺服阀既是电液转换元件,又是功率放大元件,它能够把微小的电气信号转换成大功率的液压能输出。包括Moog和博世力士乐都通过各种方法将伺服阀的重量减到最低。但是传统的减材制造有一个特点,那就是当设计优化到极限的时候,重量就不能再被减少。

英国的Domin公司专注于通过金属3D打印来开发流体动力零件。Domin公司设计并测试了一台轻型高功率和高扭矩定量泵。这是台要求高效率、低转速(4,000 rpm)和高扭矩正排量泵。Domin通过金属增材制造(AM)技术优化了固定容积泵的设计。

通过结合设计软件、有限元分析软件和计算流体动力学软件,Domin能够设计和制造功率密度为23 kW / kg,扭矩为40 Nm,排量为14 cc / rev的泵。

柱塞泵是液压系统的一个重要装置。它依靠柱塞在缸体中往复运动,使密封工作容腔的容积发生变化来实现吸油、压油。柱塞泵具有额定压力高、结构紧凑、效率高和流量调节方便等优点。径向柱塞泵可分为阀配流与轴配流两大类。径向结构设计克服了如轴向柱塞泵滑靴偏磨的问题。使其抗冲击能力大幅度提高。

在上个世纪,虽然在径向柱塞泵的开发方面进行了大量的工作,但是现有的制造技术却无法实现十分复杂的细节。金属3D打印技术允许Domin从最初的流体原理来提升泵的性能,通过3D打印的创新应用来制造泵高效轻便的换向元件。

Domin 2

 

为了能够设计具有可靠使用寿命的高效泵,需要对径向柱塞泵内的设计提炼出一套复杂的折衷方案。最有效的方法就是使用一个由沿长度方向压力平衡的枢轴组成的泵。然而,为了做到这一点,枢轴需要一个非常复杂的液压换向,这些复杂的结构只能通过金属3D打印技术来实现。

Domin公司的项目通过金属3D打印证明了径向柱塞泵设计的创新应用。 以金属3D打印作为关键制造技术和设计驱动创新的原则正在为液压行业带来全新的面貌。

资料下载,请加入3D科学谷3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=10856 0
案例 l 增材制造技术在农业机械液压歧管制造中的应用 //www.ganjiayu.com/?p=10602 //www.ganjiayu.com/?p=10602#comments Mon, 13 Nov 2017 05:18:04 +0000 http://www.51shape.com/?p=10602 近年来,增材制造技术在复杂液压件制造领域的应用得到了发展。在过去几年中,我们看到了空客公司在推动3D打印飞机扰流板液压件研发项目中所起到的积极作用;了解到意大利赛车制造企业在赛车中使用增材制造的液压系统;也看到了著名先进液压件制造企业穆格在复杂液压件设计创新与增材制造发面所做的全面探索,还看到另一家著名液压传动和控制系统制造商派克汉尼汾在其在总部附近开设了可以探索增材制造技术的“先进制造学习和开发中心”。

可以说金属3D打印在液压件制造领域的发展,一方面受到了液压件应用企业在轻量化与性能提升方面的需求的拉动。另一方面,也得益于液压系统制造企业在产品创新方面进行的尝试与努力。近日,3D科学谷看到,在意大利液压制造商aidro hydraulics公司的推动下,3D打印液压件制造技术正在进入到农业机械行业。

根据3D科学谷的市场研究,增材制造技术对于国际上部分农业机械制造商来说并不陌生。例如,德国农业机械制造商Amazone 曾通过拓扑优化技术和voxeljet 公司的3DP 3D打印技术制造的砂模、砂芯,从而制造出某款农业机械的大型轻量化机架铸件。美国农业机械制造商约翰迪尔(JOHN DEERE)在原型制造,夹具制造以及备品备件制造中都应用了3D打印技术。3D科学谷延伸阅读:案例 l 3D打印砂模解决轻量化大型铸件快速制造的挑战

aidro_hydraulic_1

图片来源:aidro hydraulics 

意大利液压制造商aidro hydraulics公司生产的液压阀体产品被应用在农业机械、航空航天、石油钻进、汽车制造等工业领域。aidro hydraulics在2017年正式推出了金属3D打印液压阀体产品,农业机械行业也是该公司3D打印液压产品的重点应用方向。

在应用金属3D打印技术进行液压产品创新时,aidro hydraulics的增材制造团队对于如何充分利用粉末床选择性激光熔化金属3D打印技术对农业机械中用到的液压歧管进行优化做了新的思考。

aidro_hydraulic_2

aidro hydraulics 为农业机械客户制造的3D打印液压阀块,打印设备为EOS M 290

图片来源:aidro hydraulics 

最终,他们设计出与上一代传统农机液压歧管具有完全相同功能的产品。该产品可以控制带有两个电磁阀和两个先导式止回阀的双作用气缸。

aidro_hydraulic_3

左图为传统液压歧管,右图为3D打印的液压歧管,图片来源:aidro hydraulics 

aidro hydraulics公司表示,与传统液压歧管相比,3D打印液压歧管的重量减轻了75%,尺寸减少了50%。

农机3D打印液压歧管的测试结果如下:

在压力测试中运行良好;

拉伸强度、延伸率、冲击韧性和硬度等力学性能均优于传统歧管;

材料的密度是99.7%;

3D打印液压歧管的内部通道的圆形弯曲形状与传统歧管中通过交叉钻孔加工方式而形成的尖锐弯角相比,能够减少湍流现象,这使得3D打印液压歧管性能可与传统歧管相媲美,甚至超越传统产品。

这些3D打印的液压歧管打印材料为铸造铝合金材料 AlSi10Mg,该材料具有良好的强度和热性能,并且重量轻。这类合金材料通常用于薄壁和复杂几何形状零件的制造。

block 3D科学谷Review

公开资料显示,我国液压市场规模居全球第一,下游主要为工程机械和农机机械。从液压元件的下游应用需求占比来看,工程机械液压件占到液压件总额近42.5%,农机约占21.28%。在2012年时,我国农机总产值就已达到3382.40亿元,超越欧盟和美国,成为全球第一农机制造大国。

农业机械本身形态多样,结构复杂,工作条件恶劣。农机对液压元件有许多特殊要求,如可靠性高。农机对液压技术的需求主要包括节能技术、静液压驱动技术和无泄漏技术等。可应用液压件的农业机械涵盖大功率拖拉机及其作业机具、装载机、清淤机、平地机等基本建设机械,大型植保机械、高产作物栽培和收获机械、农业机器人、牧业机械等众多产品类型。

值得注意的是,由于我国农民购买力低,限制了液压技术在农业机械上的应用。采用液压技术的农机档次提高了,价格也随之提高。为满足国内市场需求,主机厂不得不以降低配置、改变配置来换取市场占有率。

而随着我国新型城镇化的推进,未来我国农机补贴有望长期延续。这样利好的大环境下,有利于推动农民对于更为先进的农业机械的需求,也有利于我国农机行业继续对液压行业起到拉动作用。同时,这对推动增材制造技术走进农机液压件制造领域起到了积极作用。

点击黄颜色字体,打开视频链接。加入3D科学谷3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=10602 0
案例 l 3D打印与机加工结合成就复杂液压零件 //www.ganjiayu.com/?p=9243 //www.ganjiayu.com/?p=9243#comments Tue, 23 May 2017 02:51:45 +0000 http://www.51shape.com/?p=9243 3D打印的一大优势在于加工一些过于复杂的结构,而这些复杂正是产品实现更高附加值之所在。而传统工艺的经济性以及效率和表面精度往往是目前3D打印所难以企及的。于是不少聪明的3D打印技术践行者开始了3D打印与机加工等加工工艺的结合之路。

宾夕法尼亚大学的Timothy Simpson教授曾在TED演讲中展示过一个通过3D打印与机加工结合加工出来的复杂精密零件,这个零件是宾夕法尼亚大学的CIMP 3D打印中心、Imperial机床工具公司以及一家工业合作伙伴共同完成的。本期,3D科学谷与谷友一起来了解这个零件背后的故事。

penstate_1

混合制造过程中的第一步是设计,设计师需要考虑两种制造工艺的不同要求,并在设计过程中体现出来。例如对于选择性激光熔化金属3D打印工艺来说,设计师需要尽量避免大于45度的悬伸,便于支持打印;而为了满足数控加工的要求,还需要留有切削余量,并且考虑夹具问题。

penstate_2

在该零件的CAD设计文件横截面中我们看到,额外的材料被添加到外径上以为机加工提供切削余量,不仅在外径上,在顶部和底部的表面以及内部流体端口面上都添加了切削余量,以方便后期的机加工。

这个带复杂内腔结构的零件是用Inconel 718合金制造而成的,在设计完成后,金属3D打印系统开始了工作,按照设计的模型将零件一层一层制造出来。

选择性激光熔化工艺在加工过程中产生大量的热量,因此产生了零件内部残留的应力。 在零件制造完成后,零件被送去热处理,通过热处理以减轻内部应力并微调材料性能。

penstate_3

图片:经过热处理后的零件表面光洁度,注意金属的颜色; 是热处理过程的结果。

多轴CNC加工中心为精加工关键特性提供了高度的精度,这个特殊零件需要精确的外径,以确保跟其他零件能成功安装在一起, 为了正常运转,表面光洁度也是另外一个重要的关键质量要求。

penstate_4

此外,圆柱体的顶面和底面存在临界平面度和平行度的精度要求,这都需要通过机加工来实现。 最后,流体端口必须承受10,000psi的压力,这需要进行精密的螺纹磨削操作。

penstate_5

质量控制和认证一直是先进制造业的重要组成部分。 在机加工的质量检测环节中,我们通常依靠传统的测量设备来确保满足严格的公差要求,但是通过增材制造产生的内部结构则需要专门的技术来检查。 为了确保内部结构的正确性,宾夕法尼亚大学和Imperial机床工具公司通过计算机断层扫描系统和其他先进的设备来完成零件内部的检测。

penstate_6

图片:打印组件的内部CT扫描结果,显示内部格子结构和类似螺旋的内部通道。 照片由CIMP-3D提供,系统采用GE v|tome|x micro CT扫描系统。

最后获得的零件比原来的设计减轻重量超过40%,同时提高了流体流动性能。

penstate_7

图片:最终完成的零件 – 结合设计的自由度和精度。 依靠金属3D打印和精密加工是实现这一目标的唯一途径。

查找往期文章,请登陆www.51shape.com,在首页搜索关键词

网站投稿请发送至editor@51shape.com

欢迎转载,如需加入白名单请将微信公众号回复至3D科学谷微信公众号

]]>
//www.ganjiayu.com/?feed=rss2&p=9243 0
搬石头过河,穆格如何验证3D打印质量? //www.ganjiayu.com/?p=8712 //www.ganjiayu.com/?p=8712#comments Mon, 20 Mar 2017 04:14:34 +0000 http://www.51shape.com/?p=8712 1951年,比尔穆格研制成功电液伺服阀,这种装置可把微弱的电脉冲转换为精确而有力的运动。1951年7月,比尔、阿特兄弟俩和卢盖耶在纽约州东奥罗拉租借了已废弃的 Proner 机场的一角,成立了穆格制阀公司。

60多年来,穆格的运动控制技术已经被广泛应用于民用机座舱、发电风机、一级方程式赛车、医用输液系统等众多的市场和应用领域,有效提高相关产品的性能。 从创立到渗透到新的前沿应用领域,穆格已经培养了深入企业文化的“搬着石头过河”的开拓精神。

2015年12月,穆格收购线性模具工程公司的部分股权。2017穆格完全收购这家公司,现在被称为穆格线性。通过此次收购,基于线性模具工程公司所拥有的超过十年的金属3D打印经验,穆格线性取得了来之不易的实践知识,从而将金属3D打印零件推向小批量生产领域。

moog_buildplate_1

图片:来源Moog

引入增材制造的关键应用带来了一些挑战,尤其是对于穆格来说,关键应用包括军事航空、载人和无人驾驶、空间应用以及医疗应用领域,这些应用领域具有严格的质量和可追溯性要求。

关于商业航空领域的一个关键应用案例,增材制造的使用提出了一些新的挑战,质量认证工程-这个术语不是描述一种制造方法,而是一系列方法,每一种方法都有自己的关注点和要求。目前商用航空认证的零部件主要集中在粉末床融化加工(PBF)过程。 穆格在制造过程中发现几个重大的变化,需要特别考虑认证的目的。

moog_linear_1

在传统的减材制造过程中,通过多年的经验,穆格了解了加工工艺、热处理、铸造和锻造工艺对材料性能(包括损伤容限和疲劳寿命)的影响。其中,损伤容限(damage tolerance)是一种较新的结构设计理论。该理论假设,任何结构材料内部都有来自加工及使用过程的缺陷,而设计者的任务是利用各种损伤理论(如断裂力学)以及给定的外载荷,确定这些缺陷的扩展速度以及结构的剩余强度。 对于经受变化载荷的结构,如飞机、轮船、车辆等,损伤容限设计要结合无损探伤技术和疲劳理论,提供结构的检验期限,以保证结构中存在的裂纹在该期限内不会扩展为临界裂纹。 由于微缺陷是无处不在的,而结构的疲劳破坏往往是从微缺陷开始的,因此,对于飞行器的强度安全性分析已经逐步由静、动、疲劳强度强度转移到损伤容限分析。这也是NASA、FAA等机构对于飞行器强度认证的主要考评内容。

moog_linear_2

图片:穆格线性通过CT扫描分析零件几何槽形认证

在PBF粉末床融化加工过程中,本质是金属粉末融化凝固的过程,每个激光点创建了一个微型熔池,从粉末融化到冷却成为固体结构,光斑的大小以及功率带来的热量的大小决定了这个微型熔池的大小,从而影响着零件的微晶结构。相当于在同一时间完成了几何形状的“铸造”和材料性能的“设计加工”过程。对于穆格来说,这个过程最为复杂。

moog_linear_3

图片:穆格线性制造的承重连接件减少了93%的交货时间

所以,穆格需要增材制造过程中的变化可以被识别和控制,以便达到可重复的加工结果。

这些需要考虑的影响因素可以包括: 零件与加工设计、粉末规格及处理、粉末熔化过程、后处理及表面处理工艺、检查方法、控制系统配置及相关软件数据、加工干扰及中断、杂质污染、工艺验证、校准和维护要求和实践、操作人员的培训水平等。

moog_linear_4

其中,材料特性导致的缺陷包括无法通过优化3D打印特征参数予以解决的缺陷,主要为气孔。而由于工艺参数或设备等原因导致的缺陷,可以称之为特征参量导致的缺陷,主要有孔洞、翘曲变形、球化、存在未熔颗粒等。

为了融化粉末,必须有充足的激光能量被转移到材料中,以熔化中心区的粉末,从而创建完全致密的部分,但同时热量的传导超出了激光光斑周长,影响到周围的粉末。当激光后的区域温度下降,由于热传导的作用,微型熔池周围出现软化但不液化的粉粒。正如你所看到的,有许多因素要考虑。穆格的研究工作值得参考的是,他们已经建立起一个很好的过程文件,以控制增材制造过程变量,并通过收集和分析客观的数据证据,建立过程的可重复性。

moog_linear_5

为此,穆格制订了自己的增材制造标准被成为Moog Standards,这个内部标准也被称作工艺规范矩阵。有了这些过程和支持数据在手,穆格就可以进一步将金属3D打印推向更加深入的航空硬件制造来。

更多Moog关于3D打印的资料,欢迎加入3D科学谷QQ 群529965687下载。

版权所有3D Science Valley,转载请链接至:www.51shape.com
网站投稿:editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=8712 0