//www.ganjiayu.com 三维科学, 无限可能! Thu, 14 Nov 2024 02:31:28 +0000 zh-CN hourly 1 https://wordpress.org/?v=3.9.40 从旱冰鞋框架的“变身”看DfAM 增材设计软件工作流程 //www.ganjiayu.com/?p=29387 //www.ganjiayu.com/?p=29387#comments Wed, 30 Nov 2022 08:08:52 +0000 //www.ganjiayu.com/?p=29387 当前,大多数有趣的增材制造设计(DfAM)仍然隐藏在保密协议之后。设计师从多种形式中寻找灵感,尤其是那些回到叛逆的童年怀旧时光的灵感。本期,3D科学谷与谷友通过重新构想滑板架的这一案例,来洞悉增材制造设计(DfAM)的将激情融入科技的魅力。

skating_1

Valley_Generative Design创成式设计软件
© 3D科学谷白皮书

block 全新的工程领域

根据安世亚太《案例探讨惯性释放工况下的拓扑优化方法》一文,拓扑优化技术存在的时间很长,但是由于拓扑优化得到的复杂设计无法通过传统制造方法来实现,因此拓扑优化没有得到广泛的应用。但是通过增材制造可以解决拓扑优化后复杂结构的制造问题,因此拓扑优化技术越来越得到重视,开辟了一个全新的工程领域。

市场上的大多数滑板架都有非常相似的方形外观,同样的,拓扑优化为滑板架拥有更为炫酷的曲线外观带来了新的捷径。

skiting_top2拓扑优化

通常滑板架首选的软件是 Rhino、Maya 和 Grasshopper。设计师可以使用 SubD 工具在 Rhino 中对体量几何体进行建模,以创建更加流畅和有机的初始实体形状,并使用 Grasshopper 测试一些初步的拓扑优化和网格化。

block DfAM 软件工作流程

根据安世亚太的《人工智能如何改变工业设计?》一文,随着增材制造技术的进步,很多具有优秀性能的结构可以用在产品中。传统CAD交互式建模方式很难画出形状复杂或不规则结构。nTopology 是目前CAD市场上比较智能化的软件,它背后有很多算法,可以简化用户的建模过程,同时还可以用表格形式把多个算法串起来定义自己的设计工作流,供后续反复使用,以实现相同设计任务的自动化。

skating_top_2

与传统设计软件不同,智能算法驱动的设计完全是动态的,无论是满足几何关系约束的运动,还是像真实物理世界的物体在力的作用下产生的运动或变形,都可以在设计过程中实现,过程中任意状态的几何模型都可以输出。

根据同济x特赞设计与人工智能实验室范凌的《人工智能与设计的未来——2017设计与人工智能报告》的观察分析:需求侧的极度细分的趋势需要供给侧的人工智能来匹配;在线/连接/交互的趋势从信息在线,经历关系在线、物的在线,逐步发展为各类技能在线,最终将是心和脑的在线——人工智能/AI;伴随着具有不可被取代的超细分技能的个体不断涌现,平庸时代将会结束;未来的组织将是人/机交互的新组织,他们会把任务灵活地派发给外部人才,内部人才,或机器自动化地完成,通过建立机制把整个设计工作流程整合起来,实现最优的任务完成路径。

下面回到nTopology,通过滑板架这一形象直观的设计案例来体验为何平庸时代将会结束,在滑板架的设计中,在开放空腔中通过nTopology的软件战略性地添加了一个集成的陀螺仪设计,这也有助于防止碎屑干扰车轮。

skating_top_3

nTopology采用隐式建模技术,是一种基于数学函数或隐式模型的驱动式设计技术,使nTopology的设计流程具有高速度和可靠性。nTopology兼具CAD、CAE和CAM功能,可快速实现创成式设计、轻量化、拓扑优化等创新设计,输出可用于增材制造的产品解决方案。在用于滑板架的设计中,可以将陀螺仪几何体与底层结构混合,以创建雕刻外观,这在传统 3D 建模软件中通常是不可能的。

skating_1

nTop的隐式建模技术提供了一套新的工具,这些工具可以克服运行限制,同时描述具有不同材料特性的零件。强大的建模功能使工程师能够自动化大量的工作流程,而这些工作流程以前需要人工干预才能进行固定装置,包装和实施支撑结构的设计。使用隐式建模可以轻松设计CAM输出所需的轮廓,图案填充或任何其他复杂的几何形状。

skating_2

根据3D科学谷的了解,隐式建模带来了以前无法实现的精细细节。可变厚度偏移,自动消除干扰,渐变的材料特性和位移映射纹理等。

block 新的设计时代

通过nTopology的设计,结合3D打印,可以创造出令人惊艳的滑板架。

三个版本的惠普MJF 3D打印滑板框架:(1) 标准灰色版本,(2) 无缝大理石纹理,以及 (3) 使用隐式布尔方法创建独特的双色调图案,展示这种建模技术在划分网格方面的强大功能。

skating_3

为了确保光滑的表面光洁度,每个零件的网格导出必须以非常高的分辨率完成,重叠尽可能小,以便正确应用颜色。最后一步是最后一次将几何体带回 Rhino 以应用最终颜色并导出到 3MF 文件。这种文件类型可以允许多个重叠的网格(具有不同的颜色)被3D打印出来。

skating_4

根据3D科学谷的了解,3MF这种文件格式在压缩几何形状方面更为复杂,可以将文件大小减少了大约 65%,并允许在导出文件中嵌入文件可追溯性,例如设计师的姓名和版权信息。

总之,随着技术的日新月异,产品设计工程师需要与行业需求保持同步。由于先进制造技术的迅速发展,产品开发过程变得充满挑战。对产品进行定制以满足功能需求的需求不断增加,这引发了一场技术革命,使得所有工程学科中都达到了前所未有的复杂性水平。

知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。

frontier-s


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=29387 0
Part 2-深入剖析为增材制造而重新设计的航空航天液压歧管 //www.ganjiayu.com/?p=24512 //www.ganjiayu.com/?p=24512#comments Thu, 07 Oct 2021 15:24:35 +0000 //www.ganjiayu.com/?p=24512 根据3D科学谷的市场研究,传统液压元件与3D打印液压元件在设计上有着显著的不同。以液压阀为例,传统液压阀块为规则的长方块状结构,而3D打印液压歧管带给人的最直观印象是不再是规则的阀块,而是一组具有不规则形状的“管道”。

本期,3D科学谷结合英国制造技术中心-MTC为为增材制造而重新设计的航空航天液压歧管的案例,与谷友共同了解3D打印液压歧管与传统液压阀块在设计和性能方面有哪些不同,并为广大液压元件制造企业在利用增材制造技术进行液压元件产品设计优化升级提供参考。本文为第二部分。第一部分主要介绍了初始设计,从侧重于组件级重新设计出发。在第二部分中,将探讨该设计项目的第二次迭代,考虑了系统级重新设计方法。

Part_Gen3D© Gen3D

基于系统水平的设计

在这篇文章中,3D科学谷将从系统级重新设计的角度来看MTC英国制造技术中心如何重新设计该液压歧管。通过消除设计过程中的一些限制并移动歧管入口和出口的位置,MTC克服了在初始设计中遇到的一些除粉挑战。

在第一部分中,MTC考虑了为增材制造重新设计的歧管。具体来说,在第一次歧管重新设计中,MTC将歧管的入口和出口的位置保持在同一位置。这然而,在检查打印的歧管时,发现由于 EBM 过程中“烧结饼”的形成,粉末去除是一个重大挑战。

block 重新设计的液压歧管

对设计进行了根本原因分析,MTC确定可以通过减少流体通道的长度并确保粉末不被困住,以促进更容易的粉末去除来克服粉末去除挑战。

l 流体通道重新设计

考虑到这一点,Gen3D 和 MTC 的设计团队对设计进行了试验,并测试了如果采用系统重新设计方法会发生什么。如果查看下图的承诺-收益曲线图,可以看到系统级重新设计需要对流程做出最大的承诺。这是因为可能需要移动子装配中的其他组件,但是,这也为任何为增材制造而重新设计的歧管的重新设计提供了最大的收益机会。

Gen3D_3承诺与收益曲线显示如何为增材制造过程重新设计零件。© Gen3D

与更传统的 CAD 软件相比,Gen3D 的 Flow 模块允许用户快速重新设计流体通道。这意味着可以在不到一天的时间内将组件级重新设计从第一部分快速修改为系统级第二代部分。

两种模型之间的比较可以在下图中看到。

Part_ Gen3D_1歧管比较 – 基于组件的重新设计(左图)和系统级重新设计(右图)的比较。

© Gen3D

从两张图片中可以看出,系统级的重新设计是一个更加紧凑的设计。此外,通过利用补偿功能必要时在流体通道的顶部添加了泪珠形状,并且还在流体通道的底部添加了泪珠形状以减少所需的支撑结构总量。

l  后处理设计

在流体通道之后,3D科学谷了解到MTC采用了与第一部分类似的方法,在 Autodesk Fusion 360 创成式设计程序中定义了载荷、约束、设计空间和空隙空间。

不过,在后处理方面设计人员设置了一些关键差异。

首先,设计人员在设计中添加了两个额外的除粉口。这些被放置在第一次迭代中发现被困粉末的位置,液压歧管上增加了除粉口,便于除粉。这对于 EBM 工艺尤其重要,因为在构建过程中会形成烧结饼。

Part_ Gen3D_2© Gen3D

这有点违反直觉,因为增材制造的好处之一是可能减少组件中的组件数量。但是,有时保留额外的特征(例如除粉口)可能会有益,以减少零件后处理时的时间、精力和成本

第二个区别在于CNC加工和夹具的设置。3D科学谷了解到在这种情况下,由于可以选择移动一些通道的设计,因此可以将所有夹具保留在零件底部,并在一次设置中通过5 轴机床加工液压歧管上的所有端口。

Part_ Gen3D_3© Gen3D

Video Cover_Gen Part机加工液压歧管© Gen3D

在这种情况下,对于单个原型零件,后加工处理的成本差异并不大,但对于生产运行而言,由于设计所带来的后加工的便利性,这种变化可能会显着节省成本。最后,MTC还通过将流体通道的内部形状修改为适用的菱形形状来减少库存材料消耗量

block 歧管的测试和检查

MTC 对歧管进行了一系列检查方法。这些包括条纹投影,使用 GOM 扫描仪和 X 射线 CT 扫描来检查流体通道内是否存在被困粉末。

Part_ Gen3D_4叠加在 CAD 模型上的流形的条纹投影扫描© Gen3D

在这种歧管设计的情况下,粉末能够从歧管中完全去除,去除所有粉末意味着可以沿着增材制造工作流程,继续进行对端口接口的后处理加工。

block 加工端口接口

为了实现与接口组件的正确配合,歧管的端口必须进行后加工。在该歧管设计中,夹具设计用于将歧管向下连接到 CNC 工件夹具。然后使用触发式探针测量端口以准确确定其位置,然后在 CNC 铣床上按照规格加工端口。

在这篇文章中,MTC从系统级重新设计的角度研究了航空航天液压歧管的重新设计。通过消除对设计过程的一些限制并开辟移动歧管入口和出口位置的可能性,就有可能克服除粉方面的一些挑战,然后对歧管进行机械加工以确保接口部件可以与歧管组装。

在第三部分中,3D科学谷将与谷友一起领略MTC如何检查该歧管的实验结果,并确定原来的歧管设计转移到增材制造的歧管所带来的功能性能优势。

更多信息,请参考3D科学谷发布的《上篇-3D打印与液压白皮书》,《下篇-3D打印与液压白皮书》。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=24512 0
Part 1-深入剖析为增材制造而重新设计的航空航天液压歧管 //www.ganjiayu.com/?p=24435 //www.ganjiayu.com/?p=24435#comments Thu, 30 Sep 2021 09:09:34 +0000 //www.ganjiayu.com/?p=24435 根据3D科学谷的市场研究,传统液压元件与3D打印液压元件在设计上有着显著的不同。以液压阀为例,传统液压阀块为规则的长方块状结构,而3D打印液压歧管带给人的最直观印象是不再是规则的阀块,而是一组具有不规则形状的“管道”。

本期,3D科学谷结合英国制造技术中心-MTC为为增材制造而重新设计的航空航天液压歧管的案例,与谷友共同了解3D打印液压歧管与传统液压阀块在设计和性能方面有哪些不同,并为广大液压元件制造企业在利用增材制造技术进行液压元件产品设计优化升级提供参考。本文为第一部分。第一部分主要介绍初始设计,从侧重于组件级重新设计出发。

Part_Gen3D© Gen3D

基于组件水平的设计

Gen3D 和制造技术中心 (MTC) 最近合作开发了一个为航空航天重新设计的液压歧管。液压歧管是增材制造 (AM) 的理想选择,因为3D打印-增材制造具有减少质量和改善流量的巨大潜力。该项目表明,增材制造可以显着减少液压歧管的质量,同时确保增材制造工艺适合提供所需的机械性能

Valley_oil flow© 3D科学谷 www.ganjiayu.com

这项工作是 DRAMA项目的一部分,DRAMA项目由英国研究与创新中心通过工业战略挑战基金 (UKRI) 资助,并得到航空航天技术研究所的支持。

block 歧管的重新设计

原钢制液压歧管设计,如下图所示,重 28.5 公斤。歧管的最大工作压力为 250bar,在测试过程中必须进行 450bar 的爆破压力测试。

Part_Gen3D_2原液压歧管块设计,由钢坯加工而成© Gen3D

根据3D科学谷的了解,MTC决定在第一次设计迭代中,将歧管的入口和出口保持在同一位置

这是即插即用的解决方案,只需将旧的歧管更换为 AM 增材制造的歧管,所有部件都可以无缝地装回原位。

不过当歧管的入口和出口保持与原来设计的位置相同时,虽然通过3D打印-增材制造技术提供了使用拓扑优化和创成式设计等技术来显着减少歧管质量的空间,但仍然受到组件整体位置的限制

Gen3D_3承诺与收益曲线显示如何为增材制造过程重新设计零件。© Gen3D

根据液压回路图,设计工程师重新设计了流体通道网络。Gen3D 软件内的点击和拖动用户界面使这个过程非常快速和简单。外部组件从相关目录中下载并在组装到原始歧管中的坐标处导入。

Gen3D flow使用 Gen3D Flow 模块设计的内部流体通道© Gen3D

l 歧管的流体通道

流体通道的设计考虑了最大水平圆尺寸,最大水平圆尺寸由材料和 AM 增材制造工艺本身决定。歧管是在 MTC 英国国家制造技术中心使用 Arcam Q20 机器打印的,使用电子束熔化 (EBM) 工艺和钛合金 Ti-6Al-4V。与激光粉末床相比,EBM 工艺的好处之一是可以实现圆形通道尺寸的更大自由度,无需支撑结构即可生产

对于较大的通道,Gen3D 的自动支撑补偿工具用于将圆形通道的几何形状修改为泪珠形状,确保无需内部支撑结构即可打印通道。此外,流体通道被平滑以减少急弯并减少连接处的角度,从而改善流体流动特性。

在这个设计中,通道在与原设计相同的位置连接,不同的是堵头被移除,因为堵头是CNC机加工过程中需要钻孔所带来的导流设置,而在3D打印中,留到可以自由取向,并不需要堵头来进行流体流动导向。

在下面的 CFD 速度剖面结果中可以看到通过平滑 90° 角而改善的流体特性。

Gen_CFDCFD 仿真结果显示(左)急弯和(右)圆角, 圆角结果显示流体特性更均匀。© Gen3D

这些结构很容易从 Gen3D 的软件中导出为 STEP 文件,然后导入回 CAD 软件,以便继续设计过程并准备打印设计。

创成式优化设计

设计工程师将流体通道从 Gen3D 导出到传统的 CAD 软件中,然后使用 Autodesk 的创成式设计解决方案来优化歧管的整体结构。

Gen3D_4© Gen3D

为实现这一目标,设计工程师考虑了使用中部件的内部流体压力以及在后处理阶段需要进行的加工余量。Autodesk 的创成式设计解决方案考虑到了后加工的衔接,绿色部分显示设计中必须保留的余量空间,红色部分显示不能放置材料的区域

Gen3D_5© Gen3D

block 液压歧管的3D打印

零件通过创成式设计程序完成设计,并添加了额外的支撑,文件被发送进行3D打印。这时候,在将被加工的接口区域还添加了加工余量设计,以通过后期的后处理加工达到所需的装配公差

EBMEBM技术打印的 Ti6Al4V 合金液压歧管,两个图片中都移除了支撑,但没有进一步的后处理

© Gen3D

block 检查分析

后处理阶段包括移除构建板,然后是手动移除粉末。此外,还需要进行 CT 扫描以确定是否所有粉末都已从通道中清除。在这个案例中,扫描结果表明,一些被困粉末仍留在通道中

PART SCAN
CT 扫描图像可视化内部通道。尽管存在一些噪音,但很明显一些粉末仍被困在非视线通道内

© Gen3D

block 化学蚀刻以去除被捕获的粉末

一种用来探索去除被困粉末的方法是化学蚀刻。通过化学蚀刻可以去除大部分被困的粉末,也显着改善了表面光洁度。然而,一些被困的粉末仍然留在歧管内。

Gen3D_6(左)显示化学蚀刻槽中歧管的照片和(右)显示化学蚀刻过程后液压歧管的照片。可以看到组件表面粗糙度有显着改善

© Gen3D

在下一篇文章中,将探讨该设计项目的第二次迭代,该项目考虑了一种系统级重新设计方法,可以修改入口和出口的位置。

更多信息,请参考3D科学谷发布的《上篇-3D打印与液压白皮书》,《下篇-3D打印与液压白皮书》。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=24435 0
成分筛选、性能研究、梯度材料…了解一下金属材料高通量制备平台 //www.ganjiayu.com/?p=23344 //www.ganjiayu.com/?p=23344#comments Fri, 11 Jun 2021 12:28:49 +0000 //www.ganjiayu.com/?p=23344 21世纪科技发展的主要方向之一是新材料的研制和应用。随着科技发展日新月异,对新材料的需求也越来越多,这就需要快速研制出更多满足需求的新材料。传统的材料研究和应用周期较长,已经不符合当前新材料研发的需求。因此为了使新材料研发更省时,更经济,急需新的新材料研究及制备方法。

随着增材制造技术的不断发展,采用增材制造技术开展金属材料的高通量制备也得到了迅速的发展,且增材制造高通量制备相较于传统高通量制备技术呈现出了明显的优势。

Video cover_Pera_DfAM金属材料开发高通量制备平台© 安世亚太 

助力新材料快速开发 

block 材料高通制备技术发展背景 

图灵奖得主,关系型数据库的鼻祖Jim Gray(吉姆-格雷)在2007年加州山景城召开的NRC-CSTB大会上,提出将科学研究分为四类范式(Paradigm,某种必须遵循的规范或大家都在用的套路),依次为实验归纳,模型推演,仿真模拟和数据密集型科学发现(Data-Intensive Scientific Discovery)。

Pera_Material各种新材料开发需求© 安世亚太 

其中,最后的“数据密集型”,也就是现在我们所称的“科学大数据”。因此未来新材料的开发更多的会以海量的数据作为基础,这也是当前发展“材料基因组”工程的重要原因,“材料基因组工程”以前所未有的大量数据为基础,将人工智能数据技术与高通量计算、高通量制备、高通量表征等新技术深度融合,更快、更准确的获得成分-结构-工艺-性能间的关系,从而实现对先进新材料及工艺进行设计预测,更快的获得所需的材料。2016年开始,我国首次将材料基因组工程与技术列入国家重点研发计划。

Pera_DfAM_1科学研究的四种范式© 安世亚太 

block 金属材料高通量制备技术 

材料高通量制备技术可以在短时间内制备大量不同成分的新型材料,可以加速新型材料的研发与应用,被列为材料基因组技术的三大技术要素之一。其中金属材料的高通量制备有多种制备方法,但传统的金属材料高通量制备方法制备周期长,制备样品尺寸较小,能源消耗较高。

随着增材制造技术的不断发展,采用增材制造技术开展金属材料的高通量制备也得到了迅速的发展,且增材制造高通量制备相较于传统高通量制备技术呈现出了明显的优势:

  1. 可以快速成型多种材料试样;
  2. 可以制备毫米级以上的块状样品;
  3. 研究过程中原材料消耗较少,更经济。

Pera_DfAM_2金属材料高通量制备方法总览© 安世亚太 

基于此,安世亚太携手钢铁研究总院,基于激光选区熔化技术开发了具有国际领先水平的DLM-120HT金属材料高通量增材制备设备。

Pera_DLM120HTDLM-120HT金属材料高通量制备平台© 安世亚太 

DLM-120HT是基于异质粉末3D打印的新金属材料开发高通量制备平台。直接利用元素粉末或合金粉末进行激光选区熔化成型,一次打印过程可实现4种粉末、160种材料成分配比的力学性能样件制备,适用于钢铁材料、铝合金、钛合金、 镍基高温合金、高熵合金等金属新材料的成分筛选、性能研究以及梯度材料的研究

Pera_DLM120HT_2DLM-120HT金属材料高通量制备平台技术路线© 安世亚太 

DLM-120HT金属材料高通量制备平台具有以下特色:

1、混构打印
能实现不同金属粉末的混构打印,可自由设计成分过渡,加速新材料研发过程且可制备对不同部位有不同要求的梯度材料金属构件,提高构件性能、延长使用寿命。

2、高性能
拥有精确控量的送粉器、自主知识产权的高效粉末混合装置和高效、快拆、易维护的粉路系统,快速实现试样制备。

3、高灵活性
自主研发的APRO控制系统结合高度模块化的主机设备,可实现传统3D打印模式和高通量制备模式的自由切换,实现全自动、高效的样块及零件制备过程。

Pera_DLM120HT_3DLM-120HT金属材料高通量制备设备特点© 安世亚太 

block 金属材料高通量制备解决方案

1. 材料成分设计

基于材料热动力学计算在开展新材料研发前进行相图计算、扩散动力学模拟、析出动力学模拟及组织场计算等,基于计算结果来进行材料成分设计。

Pera_Material_2材料热动力学仿真分析© 安世亚太 

2.打印工艺仿真

借助有限元分析软件来进行基于SLM(选区激光熔化金属3D打印)工艺的打印工艺仿真,对打印过程的温度场、变形和应力进行分析,并开展变形补偿设计、预测刮板碰撞及工艺参数优化。

Pera_ANSYS打印工艺仿真分析© 安世亚太 

3.开展基于SLM工艺的高通量制备

采用DLM-120HT金属材料高通量制备平台按照设计成分及工艺开展高通量制备,快速制备出大量符合后续性能测试要求的试样。

Pera_DLM120HT_PartDLM-120HT金属材料高通量制备平台所制备的样品展示:4种材料,48种工艺/16种材料,16种制备工艺。
© 安世亚太 

4.开展性能测试

针对所制备的样品开展相关性能测试,包括密度、硬度、力学性能、组织及成分等,快速得到所需的性能参数。

Pera_DfAM_3相关性能测试项目© 安世亚太 

5.进行设计成分及工艺参数优化

基于前期所设计的不同成分数据、不同制备工艺数据以及测试得到的相关性能数据开展敏感性分析及参数优化工作,分析得到影响最终合金样品性能的成分参数或工艺参数,并得到最优的成分配比和制备工艺。

Pera_DfAM_4参数优化分析© 安世亚太 

block 结论 

新材料的研究,是人类对物质性质认识和应用向更深层次的进军。材料创新已成为推动人类文明进步的重要动力之一,也促进了新技术的发展和产业的升级。DLM-120HT金属材料高通量制备平台可以加速金属新材料研究的步伐,为我国新材料的研究添砖加瓦。

—作者— 

谢琰军
材料物理与化学专业,博士学位,多年材料及增材制造领域研发经验,参与并实施多项金属增材制造科研课题及相关技术开发工作;目前主要从事增材制造设备及工艺相关的仿真及咨询工作。 

l 文章来源:安世亚太

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=23344 0
专栏 l 结构优化设计及DfAM(增材设计)时需要考虑的工艺约束 //www.ganjiayu.com/?p=22992 //www.ganjiayu.com/?p=22992#comments Wed, 12 May 2021 09:24:01 +0000 //www.ganjiayu.com/?p=22992 special_1结构优化设计是一个经典又传统的问题,从古至今人类始终都在追求材料的高效利用。如何使用科学的方法来快速高效地设计合理的结构,一直以来都是工程师和设计师所追求的终极目标。

在进行DfAM (Design for Additive Manufacturing,简称DfAM, 面向增材制造的设计) 时, 如何在结构优化设计过程中考虑(选区激光熔化)增材制造工艺约束,实现优化结果的快速直接制备,也是一个非常重要的关注点。

本期谷.专栏文章,将围绕结构优化设计的三个层次,以及在开展DfAM时如何考虑增材制造工艺带来的设计约束这两个话题进行分享。

block 结构优化设计

pera_global

作为力学领域的一个重要分支,结构优化设计以力学为基础,集数学、物理、材料科学、计算机科学甚至图形学等许多不同学科不同领域于一体,一般是指为了满足某一种或多种特定目标(如材料消耗最少化、建造成本最小化、结构强度最大化、结构美感最大化等等),在某些需要满足的约束下(如体积约束、重量约束、几何约束等),对整体或局部结构进行的优化设计与改进。

通常情况下,结构优化(Structural Optimization)按照问题的难度和对结构的改变程度,可以分为三个不同的层次,分别为:尺寸优化(Size Optimization)、形状优化(Shape Optimization)(以及拓扑优化(Topology Optimization):

l 尺寸优化

尺寸优化:优化结构各个部件的尺寸参数,如杆的粗细,壳的厚度,构件的截面尺寸等等。

Pera_DfAM_1尺寸优化© 安世亚太

形状优化

形状优化:一般是指在保持结构拓扑连接关系不变的前提条件下,将构件的截面形状,节点的空间位置或者连续体的形状等作为设计变量,即通过修改模型的形状与边界,来改变整体结构的几何特征。

Pera_DfAM_2形状优化© 安世亚太

拓扑优化

拓扑优化:拓扑优化的概念来自于拓扑学,一般是指在某种给定的优化准则和需要满足的约束条件下,在模型需要优化的区域即设计域内确定实体域一般指材料的数量及布局,例如确定结构中各个构件(如梁、柱、墙等)的布局及其节点的空间位置与连接关系。简单的来说,就是给一定数量的材料,通过确定这些材料在整个设计域内的空间分布,使得最终得到的结构在满足条件的前提下达到最大的结构强度。

Pera_DfAM_3拓扑优化© 安世亚太

从尺寸优化到形状优化再到拓扑优化,问题的复杂度越来越高,难度也变得越来越大,因此它们在工程应用中的成熟度依次降低。然而在实际设计中,这三个优化层次的使用顺序恰好相反,分别对应于三个不同的设计阶段。

Pera_DfAM_4© 安世亚太

一般整个结构的拓扑结构要在概念设计阶段初步决定,这也是整个设计过程中难度最大的阶段,拓扑结构能够体现设计者的创意、水平,能够反映结构的构造。确定了拓扑结构之后,便进入基本设计阶段,即进一步优化各个部件的形状,最后再进入详细设计阶段,确定每一个部件的尺寸大小。整个设计过程遵循从整体到局部的设计理念,即先从宏观上设计整体结构,再从局部改进构造、优化尺寸。

当然,一个优秀的结构一般很难通过这个过程就能一次确定下来,在实际设计时这个过程一般需要不断地迭代更新,以在满足各种设计需求的前提下,达到最终的目的。

block 增材制造工艺约束

pera_global

在进行DfAM (Design for Additive Manufacturing,简称DfAM, 面向增材制造的设计) 时, 如何在结构优化设计过程中考虑增材制造工艺约束,实现优化结果的快速直接制备,也是一个非常重要的关注点。

增材制造并非完全“自由”制造,仍然存在独特的制造约束,主要包括以下三类:结构最大/最小尺寸、支撑结构、制造缺陷(表面粗糙度、材料各向异性等)。

尺寸特征

不同的3D打印设备具有不同的成型尺寸和打印精度,因此在结构设计时要注意最大/最小尺寸。一般情况下,结构的最大尺寸由成型平台决定,过大的结构应当设计工艺分离面和连接形式。最小尺寸特征由打印设备的精度、分辨率、光斑大小等参数决定,设计师应当避免无法制造的细杆、小孔等结构。

Pera_DfAM_5增材制造结构的连接形式和测试样件© 安世亚太

Pera_DfAM_6增材制造结构的最小尺寸约束© 安世亚太

l 支撑结构设计

增材制造过程中,往往需要在悬垂结构下方添加支撑结构,以防止制造过程中结构坍塌。但是支撑结构不仅仅会带来材料的浪费、打印时间的增加,而且在后处理过程中带来工艺难度增加,影响结构最终表面精度。因此设计自支撑结构,在优化过程中自动识别特征结构,避免大悬挑结构。

笔者分享一个设计小技巧:当支撑面无法避免时,那么就把表面质量要求最高的面设计为支撑面,这与支撑面表面质量最差的常识正好相反。因为增材制造的零件一般无法满足直接装配的要求,装配面等质量要求高的面需要再次机械加工,这样做的好处是去支撑的后处理过程正好与机械加工同时进行。

 制造缺陷

增材制造技术虽得到了飞速的发展,然而整体来看该制造工艺仍处于技术发展初期,产品往往存在一些缺陷,例如材料各向异性、表面粗糙、内部孔洞、材料性能不稳定等问题。设计者应当考虑制造缺陷对结构性能的影响,主要包括:设计较大的安全裕度(>1.5),设计时考虑无损检测的可检性和可达性,缺陷易发区域设计为非关键区域等。

block DfAM 全新设计范式

pera_global

总之,DfAM就是从产品功能出发,同时兼顾增材制造工艺的可行性的设计方法,它是在关注增材制造工艺的商业化应用过程中实现对零件、组件甚至系统的重新设计。

在此基础上,安世亚太提出DfAM设计方法,就是基于增材思维的先进设计与智能制造整体解决方案,是新一代造物革命下的全新设计范式。

近期,由安世亚太翻译出版的《增材制造设计(DfAM)指南》正在热销,作者是瑞典隆德大学的三位学者——奥拉夫·迪格(Olaf Diegel)教授、阿克塞尔·诺丁(Axel Nordin)博士和达米安·莫特(Damien Motte)博士。2019年8月,奥拉夫·迪格教授在接受PLM Group媒体采访时,谈到加速增材制造技术大规模商用化的关键,是学习DfAM(增材设计);为了服务广大增材设计和制造从业人员,缩短学习曲线,避免重复发明轮子,所以撰写这本实用指南。

该书就如何面向增材工艺设计零组件以获取成本和性能的最大收益,提供了详尽的指南和丰富的案例,包括增材制造导论、增材制造工艺、增材设计战略、增材设计分析优化工具、零件合并准则、增材工艺工夹具设计准则、面向聚合物和金属的增材设计、后处理、以及增材制造的健康安全和零件认证、增材制造的未来等章节。

作为全球第一本的DfAM(增材设计)专著,该书中译本将为我国增材产业从业者、工业产品研发设计、工艺和制造人员,带来全方位的以增材思维驱动的增材设计细节知识和工程应用经验分享。

—作者—

马立敏

高级工程师,安世亚太首席专家,北京航空航天大学/中国商飞公司博士后。主要研究方向为增材制造创新设计与应用,设计的产品多次获得全国性学会及行业大奖,在增材制造创新设计与应用方面具有丰富的经验和独到的见解。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=22992 0
专栏 l DfAM(增材设计)底层通用技术之参数优化 //www.ganjiayu.com/?p=22943 //www.ganjiayu.com/?p=22943#comments Thu, 06 May 2021 12:26:39 +0000 //www.ganjiayu.com/?p=22943 special_1

DfAM(Design for Additive Manufacturing, 简称增材设计),是应用于增材制造工艺的可制造性设计,可实现对增材制造过程中的零件、组件甚至系统进行重新设计,已经成为基于增材制造思维的先进设计与智能制造的全新设计范式。

DfAM的核心技术是仿真驱动的优化设计技术,包括创成式设计技术、拓扑优化设计技术、点阵设计技术、参数优化技术、仿真分析技术等。

其中,参数优化应用于详细设计阶段,进行设计定型或者设计改进,如确定最优尺寸、形状等。本期谷.专栏文章将要分享的即为DfAM 的底层通用技术-参数优化。

block 参数优化

pera_global

详细设计阶段的设计定型,利用参数优化技术进行参数化建模和模型参数驱动分析是关键。

参数优化基于CAD/CAE双向驱动参数化CAD模型,CAE软件驱动CAD参数更新并通过CAE软件进行设计方案的性能分析,结合特定的优化算法获取满足优化目标的最佳设计方案。

参数优化技术通常包括:

  • 参数敏感性分析:通过量化指标确定设计参数对产品性能的重要性程度,完成重要参数识别和过滤。并应用拟合算法建立输入输出响应面,进行快速优化。
  • 多学科多目标优化:应用优化算法,搜索满足优化目标的最佳设计变量值,实际客户需求往往要求的优化目标可以是针对不同物理场或者学科的多个目标,故称多学科多目标优化。
  • 稳健性可靠性评估与优化:评估设计参数的波动对产品性能的影响,预测产品的失效概率并进行优化。

参数优化是详细设计阶段进行设计定型的重要技术,为了克服多学科非线性优化中遇到的大量设计参数的困难,参数优化可以进行参数敏感度分析、稳健性评估、可靠性分析、多学科优化、稳健与可靠性优化等等。

Pera_Data图1 参数优化技术© 安世亚太

通过参数敏感性分析,在众多参数中识别出影响性能的重要参数,过滤掉不重要的参数,建立响应面;通过多学科优化,输出满足设计需求的最佳设计参数;通过稳健性、可靠性分析及优化,评估离散参数对产品性能的影响程度,从而实现参数优化,对产品设计改进、定型,完成最终的详细设计。

参数优化的一般流程包括以下步骤:

  1. 参数化建模:包括参数化CAD模型(如尺寸参数)以及参数化有限元模型(如载荷工况条件参数化)。
  2. 参数敏感性分析:识别重要性参数,过滤无关参数,并建立高质量响应面,为后续快速优化做准备。
  3. 优化分析:定义优化目标、约束条件,设定优化算法进行优化计算。
  4. 设计验证:对最终的优化设计进行验证性分析。
  5. 稳健性可靠性评估:若对可靠性有要求,则进行稳健性可靠性分析与优化。

Para_process图2 参数优化流程© 安世亚太

block 应用案例

pera_global

l 吞沫机螺旋叶片管道优化设计

吞沫机是依据流体力学、等速螺线、空吸作用以及射流原理设计而成。当具有一定压强的气流通过螺旋叶片管道后按特定的方向流动并通过吞沫机的喷腔装置时,在吞沫机周围形成一个负压区,大量挤压在吞沫机周围的泡沫,在负压所形成的空吸作用下,通过各环形吸沫口被吸入该机管腔,在空气动力的作用下将泡沫击碎雾化。液体沿着射流方向与罐内原料液溶为一体,气体则沿着排气管道排出罐外。

针对自动吞沫机的核心部件螺旋叶片管道作为优化分析对象,通过流体仿真分析,获得气体通过螺旋叶片管道后的流场分布和压力分布,并通过优化螺旋叶片管道的几何结构来优化流场分布和压力分布,提高吸沫和碎沫能力。具体如下:

  • 参数化建模:对螺旋叶片管道进行几何建模并参数化,几何特征的建模及参数化模型进入到后续仿真流程中;
  • 流场分析:通过流体仿真软件ANSYS Fluent分析一定压强的气流在螺旋叶片管道内的流动情况,确定其流场分布和压力分布;
  • 优化设计:以螺旋叶片管道几何参数为设计参数,以吸沫和碎沫效果最大化为优化目标,并以流体动力学量化指标来衡量吸沫和碎沫能力,基于optiSLang进行多目标参数优化:通过参数敏感性分析寻找对设计目标和约束最敏感(即最重要)的设计参数,并对设计目标和约束进行响应面的拟合,生成高质量的响应面,并基于此进行优化分析。

Pera_Part 图3 螺旋叶片管道的几何结构© 安世亚太

Pera_part process图4 螺旋叶片管道的优化设计流程© 安世亚太

通过对比螺旋叶片管道优化前后的空气的流速和压力分布发现,优化后空气进入螺旋叶片管道的流量增加22%,而优化后吸沫口内外压力差增大了5倍,同时,吸沫效果得到了显著提高。

Pera_process_2图5 优化结果© 安世亚太

l 振动台动圈骨架优化设计

电动振动台可以模拟产品在制造、组装运输以及使用执行阶段所遭遇的各种环境,用以鉴定产品是否具有忍受环境振动的能力,被广泛应用于国防、航空、航天、通讯、电子、汽车以及家电等行业。动圈骨架是电动振动台的关键部件,其动力学特性的优劣将直接影响振动台系统的一阶竖向共振频率的高低,从而影响振动台工作频率的上限和非线性失真大小,因此一阶竖向共振频率是设计振动台的技术关键。

铝合金振动台动圈骨架的工作状态为振动环境,其原始设计工作频率偏低,不能达到预期,希望通过优化设计来提升性能:

  • 质量不增加;
  • 竖向一阶共振频率尽量提升;
  • 其余性能指标与原设计相当于或优于原设计(强度、Q值、横向振动、台面振动均匀度)。

Pera_Part design图6 振动台动圈骨架原始结构© 安世亚太

基于优化目标,采用拓扑优化与参数优化相结合的优化技术对其进行优化:

  • 拓扑形貌优化:利用拓扑优化软件GENESIS对动圈骨架原设计结构进行拓扑形貌优化,以获得具有最佳材料分布和最佳传力路径的动圈骨架结构的概念设计,骨架的腹板中央和面板和外围环板区域应该减薄;腹板外侧和骨架底部环板区域应该加厚。具体减薄、加厚的范围以及板材尺寸则需要通过参数优化获得;
  • 参数化建模:基于拓扑优化的结果建立参数化CAD模型;
  • 参数优化:利用参数优化软件optiSLang对拓扑优化后的参数化进行敏感性分析,获得了对响应(即:骨架质量和竖向一阶共振频率)影响较大的参数,而过滤掉那些对响应影响很小的参数,从而实现参数空间降维;然后,利用影响较大的参数进行多目标参数优化,获得即满足骨架质量最小,又满足竖向一阶共振频率最大的最佳参数组合及其模型,完成最终的详细设计;
  • 性能验证:对优化设计的最终模型进行了性能验证并与原始结构的性能指标进行对比,相对于原设计,最终优化结果在质量降低1.3kg的情况下频率提升270Hz,其他性能指标也全面提升表明动圈骨架结构的最终优化设计全面优于原设计。

Pera_part process_2图7 振动台动圈骨架优化设计© 安世亚太

block 总结

pera_global

本文简要介绍了参数优化技术以及参数优化设计流程,并通过两个实例验证了参数优化在产品设计中的重要作用。随着DfAM(增材设计)在增材制造产业的广泛应用,参数优化势必会在其中发挥更大的作用。

l 文章来源:安世亚太

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=22943 0
专栏丨DfAM(增材设计)底层通用技术之拓扑优化设计 //www.ganjiayu.com/?p=22926 //www.ganjiayu.com/?p=22926#comments Fri, 30 Apr 2021 13:32:53 +0000 //www.ganjiayu.com/?p=22926 special_1

DfAM(Design for Additive Manufacturing, 简称增材设计),是应用于增材制造工艺的可制造性设计,可实现对增材制造过程中的零件、组件甚至系统进行重新设计,已经成为基于增材制造思维的先进设计与智能制造的全新设计范式。

DfAM的核心技术是仿真驱动的优化设计技术,包括创成式设计技术、拓扑优化设计技术、点阵设计技术、参数优化技术、仿真分析技术等。

其中,拓扑优化应用于产品的概念设计阶段,用于优化材料的合理分布以及获得最佳传力路径。本期谷.专栏文章将要分享的即为DfAM 的底层通用技术-拓扑优化设计。

实现真正的正向设计模式

pera_global

拓扑优化设计属于概念设计,基于减材设计理念,通过计算可挖除的材料区域来确定最佳的材料分布,基于拓扑优化可以形成非常富有想象力的颠覆性设计方案,使得全新的设计思想和创新型的设计方案能够通过增材制造得到实现。

拓扑优化可以帮助确定结构的最佳材料分布,在进行拓扑优化的时候可以考虑结构静力学或者动力学条件、多工况、多目标、多约束条件、以及工艺约束条件等,基于已知的设计空间确定刚度最大、质量最小或者体积最小等优化目标,通过计算材料内最佳的传力路径、优化单元密度确定可以挖除的材料,从而获得结构设定区域内最佳的材料分布。拓扑优化革新了传统的功能驱动的经验设计模式,实现了性能驱动的生成式设计,成为真正的正向设计模式。

广义的拓扑优化还包括其它结构优化技术:形状(形貌)优化和尺寸优化。形状优化以有限元模型节点为对象,节点位置是设计变量,通过节点位置的变化优化结构外形;形貌优化是形状优化的一个特殊情况,可以生成加强筋。尺寸优化以有限元模型单元为对象进行优化,用于薄壁或者细长结构的优化,其设计变量是单元的截面尺寸,如梁横截面尺寸或薄壳厚度等。

拓扑优化仅给出材料分布的概念设计,还需要针对拓扑优化结果进行处理。后拓扑结构设计借助于专业的模型处理技术,最大限度地保留拓扑优化的结构特征,考虑美学、力学甚至装配要求,将其转换为可用的设计方案并形成有效的CAD模型。后拓扑模型处理的关键步骤包括

  • 拓扑优化结果输出STL格式;
  • 在后拓扑处理环境中进行片体模型处理,如清理、修复、光顺、调整、分析等;
  • 将STL模型转换为CAD实体几何模型;
  • 基于实体模型直接建模操作,如拉伸、移动、建模等;
  • 当有参数优化需要时,对关键尺寸进行参数化。

应用案例

pera_global

l 振动台动圈骨架优化设计

电动振动台模拟产品在制造、组装运输以及使用执行阶段所遭遇的各种环境,用以鉴定产品是否具有忍受环境振动的能力,被广泛应用于国防、航空、航天、通讯、电子、汽车以及家电等行业。

动圈骨架是电动振动台的关键部件,其动力学特性的优劣将直接影响到振动台系统的一阶竖向共振频率的高低,从而影响到振动台工作频率的上限和非线性失真大小,因此一阶竖向共振频率是设计振动台的技术关键。某型号振动台动圈原始设计如图1所示。振动台动圈结构的优化目标是在保证骨架质量不增加的前提下,其竖向一阶共振频率尽量提升,其余性能指标(如强度、Q值、横向振动、台面振动均匀度等)与原设计相当或优于原设计。

Pera_Topo_1图1 振动台动圈骨架原始结构© 安世亚太

针对此动圈骨架优化策略的实现手段是:

首先在ANSYS Workbench里对动圈结构的原设计模型进行有限元分析,以获得原设计结构的相应性能评价指标,并以此分析为基础,利用拓扑优化软件GENESIS对动圈骨架原设计结构进行拓扑形貌优化,以获得具有最佳材料分布和最佳传力路径的动圈骨架结构的概念设计;

然后基于拓扑优化的材料分布确定参数化建模方案并利用参数优化软件optiSLang对参数化模型进行参数优化,完成最终的详细设计;

最后,对最终的详细设计进行有限元分析,提取相应的性能评价指标值,并与原设计的相应性能评价指标进行比较,最终确定优化设计是否满足要求。

拓扑形貌优化的目标是动圈骨架结构的竖向刚度最大,质量最小,约束是变形不大于原设计在相同载荷条件下的变形。其优化结果如图2所示。拓扑形貌优化结果可以给出后续设计的改进方向。从拓扑形貌优化的结果可以看出:骨架的腹板中央和面板和外围环板区域应该减薄;腹板外侧和骨架底部环板区域应该加厚。具体减薄、加厚的范围以及板材尺寸则需要通过参数优化获得。经过参数优化和几何模型重构后的最终设计如图3所示。

Pera_Topo_2图2 拓扑形貌优化结果© 安世亚太
Pera_Topo_3图3 振动台动圈骨架的最终设计模型© 安世亚太

通过对振动台动圈的性能指标进行评估,并与原始结构的性能指标进行对比,可以得出,通过优化获得的最终设计在质量减小的情况下,其性能全面优于原始结构,特别是其主要性能指标(一阶竖向共振频率)提高了11%。

Pera_Topo_4图4 振动台动圈骨架优性能验证© 安世亚太

l 载荷分散结构优化设计

某集中载荷作用在载荷分散结构中心,并通过连接结构扩散传递到主结构完成集中载荷的扩散。为了更高效地实现集中载荷的扩散,对该结构进行设计优化,要求在光敏树脂材料用量不超过30ml的基础上,使得该结构的集中载荷极限承载能力达到最大。

Pera_Topo_5图5 载荷分散结构的拓扑优化流程© 安世亚太
Pera_Topo_6图6 载荷分散结构的拓扑优化及设计验证© 安世亚太

利用ANSYS Topology对该结构进行拓扑优化,获得了材料分布,并进行了后拓扑结构设计、重构,形成初始设计方案,基于光敏树脂的基本参数确定合理的应力应变曲线,并基于该应力应变曲线,通过非线性材料失效模拟对设计方案进行极限承载能力和失效模式验证,根据仿真结果不断地对设计方案进行迭代改进,得到的设计方案其极限承载力达到7693N,经过试验验证,它的实际加载力达到了7508.9N,仿真结果的误差仅为2%,经过进一步的设计及迭代,最终设计方案的极限承载能力达到9191.6N。其拓扑优化流程、拓扑优化结果、后拓扑模型重构以及设计验证如图5、6所示。

拓扑优化将在增材制造领域发挥更大作用

pera_global

增材制造的优势是显而易见的:它可以实现传统工艺手段无法制造的设计,比如复杂轻量化结构、点阵结构设计、多零件融合一体化制造等。增材制造带来了全新的设计可行性,也需要匹配全新的设计理念来发挥增材制造的优越性,即DfAM (面向增材的制造设计)。DfAM设计的核心技术是仿真驱动的优化设计,而拓扑优化是其中重要的一环。本文简要阐述了拓扑优化设计流程,并通过两个实例验证了拓扑优化在产品设计中的重要作用。随着DfAM 在增材制造领域的广泛应用,拓扑优化也会在其中发挥更大作用。

l 文章来源:安世亚太

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=22926 0
金属3D打印-增材制造设计指南(上) //www.ganjiayu.com/?p=11132 //www.ganjiayu.com/?p=11132#comments Wed, 17 Jan 2018 07:28:17 +0000 http://www.51shape.com/?p=11132 粉末床熔融金属3D打印技术为构建具有自由形状和复杂特征的零件提供了极大的自由度,可直接根据CAD数据制造成品,无需使用成本高昂的加工工具。若以传统方式来制造这些设计复杂的零件,则显得非常不切实际,甚至根本不可能完成。增材制造技术制造的零件往往更轻、更高效且能够更好地发挥工作性能。

然而,这并不是说这种灵活性能够让我们随心所欲地设计任何想要的形状,至少在成本的约束下,我们也不可能做到这一点。

在这方面,金属3D打印专家英国雷尼绍总结了一系列的增材制造设计指南,在此,3D科学谷将分为两期与谷友分享,本文为上半部分。

与任何制造工艺一样,增材制造技术也有自己的优势和局限性。例如,对于采用激光粉末床熔融技术制作的零件,如果设计有悬伸部分 — 也就是具有要在未熔粉末的顶部进行熔融加工的位置 — 则可能需要设计一次性支撑才能顺利完成加工。这些支撑会增加加工时间、消耗更多材料,而且还需要额外的后处理来进行移除。

功能经过优化的零件

图片中零件功能虽经优化但并不是为用于增材制造 (AM) 而设计的零件可能需要大量支撑,导致它们的制造效率偏低。

renishaw_am_1

来源雷尼绍

因此,如果我们打算采用增材制造技术生产性能优异的零件,同时又要兼顾经济和实用性,那么增材制造设计 (DfAM) 就变得尤为重要。

下面我们开始介绍能够提高增材制造加工的成功率及生产效率的诸多关键因素,并解释了设计师在开发高效的生产零件时应遵循的一些重要指导原则。

因素1:残留应力

残留应力是快速加热和冷却的必然产物,这是激光粉末床熔化工艺的固有特性。每一个新的加工层都是通过如下方式构建的:在粉末床上移动聚焦激光,熔化粉末顶层并将其与下方的一个加工层熔合。热熔池中的热量会传递至下方的固体金属,这样熔融的金属就会冷却并凝固。这一过程非常迅速,大约只有几微秒。

新的金属层在下层金属的上表面凝固和冷却时会出现收缩现象,但由于受到下方固体结构的限制,其收缩会导致层与层之间形成剪切力。

renishaw_am_2

图 : 激光在固体基体的顶部熔融金属形成新的焊道(左)。激光沿着扫描矢量移动并熔融粉末,随后通过将热量传递至下方的固体金属,熔融后的粉末开始冷却。凝固后,冷却金属收缩,该金属层与下一层之间就会形成剪切力(右)。来源雷尼绍

残留应力具有破坏性。当我们在一个加工层顶部增加另一个加工层时,应力随之形成并累积,这可能导致零件变形,其边缘卷起,之后可能会脱离支撑:

renishaw_am_3

来源雷尼绍

在比较极端的情况下,应力可能会超出零件的强度,造成组件破坏性开裂或加工托盘变形:

renishaw_am_4

来源雷尼绍

这些效应在具有较大横截面的零件中最为明显,因为此类零件往往具有较长的焊道,而且剪切力作用的距离更长。

-尽可能减小残留应力

解决这一问题的手段之一是改变我们的扫描策略,选择一个最适合零件几何形状的方法。当我们用激光轨迹填充零件中心时,通常会来回移动激光,这一过程称之为“扫描”。我们所选择的模式会影响扫描矢量的长度,因此也会影响可能在零件上积累的应力水平。采用缩短扫描矢量的策略,则会相应减少产生的残留应力:

迂回扫描模式

- 完成每层扫描后旋转67°

加工效率较高

残留应力逐渐增加

适合小、薄特征

条纹扫描模式

残留应力均匀分布

适合大型零件

加工效率高于棋盘扫描模式

棋盘扫描模式

每层分为若干个5×5 mm的岛状区域

完成每层扫描后将整体模式和每个岛状区域旋转67°

残留应力均匀分布

适合大型零件

renishaw_am_5

 

图 :扫描策略与适合它们的不同零件类型。两种最常见的扫描策略分别是用于薄壁零件的“迂回”扫描(也称为光栅扫描),及用于具有较厚截面的零件的“条纹”扫描。“棋盘”或“岛状”扫描策略也同样有效。条纹和棋盘扫描可缩短各扫描线的长度,减少残留应力的累积。来源雷尼绍

我们也可以在从一个加工层移至下一个加工层时旋转扫描矢量的方向,这样一来,应力就不会全部在同一平面上集中。每层之间通常旋转67度,以确保在加工完许多层后扫描方向才会完全重复。

加热加工托盘也是用于减少残留应力的一种方法,而序后热处理也可减少累积的应力。

—“ 残留应力设计建议”—

- 尽可能通过设计消除残留应力

- 避免大面积不间断熔化

- 注意横截面的变化

- 混合加工将较厚的底板整合到增材制造零件中

- 在应力可能较高的位置使用较厚的加工托盘

- 选择一种合适的扫描策略


在任何叠层制造工艺中,加工方向始终限定在Z轴 — 即垂直于加工托盘。请注意,加工方向并非始终都是通用方向。应当选择合适的方向,以便使用最少的支撑材料或不使用支撑材料来生产最稳定的加工件。

-悬伸部分和熔融过程

在粉末床加工工艺中,由于形状是一层层构建起来的,因此层与层之间的关联方式非常重要。当每一层熔化时,它需要下面的一层来提供物理支撑和散热路径。

当激光熔化粉末层时,如果粉末层下方为固体金属,则热量会从熔池传递至下方结构,这会再次熔化部分固体金属并形成牢固的焊接。随着激光源移开,熔池也将快速凝固,因为热量已被有效传递出去。

如果零件具有悬伸部分,那么熔池下方区域至少有一部分会是未熔粉末。这些粉末的导热性远远低于固体金属,因此来自熔池的热量会保留更长时间,导致周围更多粉末烧结。结果可能是,多余材料附着在悬伸区域的底面,这意味着悬伸结构可能呈现出畸形和粗糙的表面。

renishaw_am_6

图:在固体金属上方熔化粉末能够快速冷却(左)。当粉末熔化过程发生在悬伸区域时,由于其下方是未熔粉末,因此需要更长时间冷却,而多余的材料可能会附着在零件的底面。来源雷尼绍

-摆放方向选择

一般来说,与加工托盘形成的角度小于45度的悬伸结构需要支撑。

悬伸表面被称为下表层。它们通常会呈现出比垂直壁面和朝上表面更粗糙的表面。这种效果是熔池冷却速度减慢导致悬伸结构下方的粉末局部烧结所致。

通常能够在多个方向上完成一个零件的加工。我们应选择可实现最理想的零件自身支撑的摆放方向,以便尽可能降低加工成本并减少后期处理工作。

renishaw_am_7

图:一个零件通常可沿多个方向完成加工,摆放方向的选择将大大影响支撑材料用量以及所需的后处理工作量。从左起:

- 大悬臂,需要大量的支撑材料(显示为蓝色)

- 修改设计,添加额外的锥形以减少支撑,结果可导致零件质量增加,可能需要后处理加工 / 线切割加工

- 倾斜45度 — 除了一个局部最低点外,大部分采用零件自身支撑(详情请参见下文)。下表层和上表层将呈现出不同的表面粗糙度

- 倒置,底面采用短支撑 — 加工时间缩短,但后期需要对支撑面进行精加工

紧密附着在粉末床上,留出适合电火花 (EDM) 移除的毛坯余量 — 残留应力可能是个问题

- 与前一种方式相似,但附着区域较少,减少了应力累积 — 从制造角度来看,这可能是最高效的设计

- 最后一种方法(未显示)是将零件平放在托盘上。这可以降低加工高度,但也会限制可在加工托盘上摆放的零件数量,并且容易形成更大的残留应力。(来源雷尼绍)

最好是在零件设计过程的前期便使用加工文件处理软件评估各个摆放方向,以确定最有效的方式。一旦做好决定,便可以在此基础上继续进行详细设计。

-局部最低点

局部最低点是零件上未与下方粉末熔融层连接的任何区域。这些区域在加工过程中需要添加支撑来固定。如果在下方没有支撑结构的情况下开始加工,当刮刀处理下一层时可能会造成第一个加工层发生位移,导致加工失败。

renishaw_am_8

来源雷尼绍

局部最低点可能会非常明显,如上例所示。它们也可能出现在与零件边缘相交的横孔和斜孔的顶部(如下例所示)。

renishaw_am_9

来源雷尼绍

特征摆放方向

如前所述,下表层的表面光洁度一般较差。如果我们要生产具有最佳精度的细节特征,那么最好将这些特征定位在零件的顶面,也就是上表层。嵌入下表层的细节特征很有可能会损失精度。

另一个要考虑的问题是零件相对于加粉刮刀的摆放方向。当添加一层新的粉末时,刮刀会在粉末床上铺开粉末,粉末逐渐被刮刀挤压以形成新的密集层。当材料被挤压时会在粉末床上形成压力波。该压力波会与朝向刮刀方向倾斜的零件表面相互作用,向下挤压粉末并向上挤压零件的前边缘。这可能会使零件钩到刮刀上,导致加工失败。请注意,柔性刮刀可以降低这种影响。

renishaw_am_10

图 :加粉刮刀和零件斜边的相互作用。来源雷尼绍

支撑和斜边的摆放应尽可能远离刮刀方向。通过旋转零件,压力波现在能够以倾斜的角度冲击零件,因此降低了零件变形的可能性。

如果无法通过旋转调整位置,或零件是旋转对称的,则可能需要添加支撑,而受影响的加工面可能需要进行后期处理。

—“ 摆放设计建议”—

- 设计用于增材制造的零件的加工摆放方向应明显

- 设计师应尽量创建自身支撑设计

- 加工成功是首要考量

- 残留应力和表面光洁度也是受摆放方向影响的重要因素

- 摆放方向可影响加工时间和成本

- 具有复杂几何形状的零件可能不太容易摆放 — 通常需要在表面质量、细节、加工时间/成本和支撑结构之间权衡取舍

- 设计师必须评估冲突因素以确定摆放方向

本文来源:雷尼绍
资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com

]]>
//www.ganjiayu.com/?feed=rss2&p=11132 0