//www.ganjiayu.com 三维科学, 无限可能! Thu, 14 Nov 2024 02:31:28 +0000 zh-CN hourly 1 https://wordpress.org/?v=3.9.40 (三)nTop隐式建模 l Generative AI时代背景下的创成式设计应用洞悉 //www.ganjiayu.com/?p=32517 //www.ganjiayu.com/?p=32517#comments Sun, 23 Jul 2023 12:15:56 +0000 //www.ganjiayu.com/?p=32517 创成式设计将激发设计师通过手动建模不易获得的思想灵感,创造出拥有不寻常的复杂几何结构设计作品。3D打印技术由于可以将复杂的设计转化为现实,注定已成为创成式设计的“好伙伴”。

其中人工智能会针对工程师设置的参数和功能目标优化设计。工程师设置载荷,材料约束和边界条件,确定其功能目标,通过创成式算法优化设计空间内的材料布局,以满足这些工程师设置的目标并最大化性能。本期,3D科学谷与谷友通过创成式设计的一些案例,来领略创成式Generative时代的到来!本期Highlight的软件工具是nTopology的nTop创成式设计软件。

Valley_创成式设计创成式设计
© 3D科学谷白皮书

block 更快

nTopology的nTop设计软件不仅涉及拓扑优化,对创成式设计的定义确实与其他公司有所不同。nTop 是一个优化平台,使用户能够根据特定要求创建自己的生成算法。 该公司旨在为用户提供具有必要控制级别的工具,以便可以更快、更高效地进行设计迭代。

nTop作为一款面向增材制造的高效设计平台,为用户大大提升设计效率,缩短产品开发的迭代周期,提高产品的性能,解决增材制造全流程的设计需求。

- 自由拖拽模块化的工具开展设计,快速方便搭建设计流程;

- 自定义工作流设计,避免重复搭建设计流程,大大提升设计效率;

- 大量可选晶格及纹理库,快速迭代,实现产品晶格填充及表面纹理设计;

- 快速搭建基于函数、实验数据和仿真分析结果驱动的设计,实现目标驱动的设计;

- 含模型设计、轻量化设计、仿真分析、拓扑优化、打印支撑设计及模型切片等功能模块,可满足面向增材制造的复杂产品打印前准备。

block 隐式建模

根据 nTop 的说法,创成式设计包含三个核心组成部分:几何图形生成、基于约束和要求的设计优化以及自动化设计循环。

根据安士亚太,nTop软件使用了更为有效的隐式建模技术(Implicit Modeling),该建模原理基于隐式函数(Implicit Function)的运用,而隐式函数(简称i- function)是一个数学函数,它的作用是给三维空间内的每个点都分配一个值。在隐式建模中,3D几何被定义为数学函数,此功能使工程师能够快速生成复杂的结构(如晶格或厚度可变的壳),同时提供为自动化设计循环提供所需的可靠性。

基于隐式建模技术的nTop设计平台具有三大技术优势:

1.稳定可靠的隐式建模引擎:nTopology设计平台基于隐式建模技术(一种使用数学函数来表征几何结构外形及内部特征的方法),使得设计流程具有无与伦比的速度和可靠性。

2. 驱动式设计:驱动式设计提供了一种指定设计特征的参考控制方法,可快速实现基于数学公式、函数、实验数据、有限元分析结果或其他数据的结构参数驱动式设计,生成创新设计解决方案。

3. 可重复使用的工作流:nTopology设计平台的工作流可自定义、可自动化、可重复使用、可共享,大大提高流程效率,同时可帮助工程师获取工程知识。

nTop 允许工程师叠加场以创建优化结构。例如,模拟结果可用于局部加厚晶格结构或增加应力较高区域的脱壳操作厚度。

bike_nTopology© nTopology

例如,如果用户想要找到最佳厚度值,使零件具有可能的最小重量,但最大挠度低于特定阈值。在 nTop 中,用户可以自动生成具有10种不同厚度的设计变体,并选择最佳的一种。

该软件的设计自动化功能使工程师能够构建可重用的流程,当输入变量发生变化时,这些流程会自动重新运行。这样,用户可以快速迭代并自动生成多个候选设计,并根据工程要求对其进行评估。

block 联动模式

根据3D科学谷,2023年,nTopology还和工业3D打印公司EOS宣布开发一种新的隐式互操作功能,能够以兆字节为单位传输复杂设计,解决了增材制造工作流程中的一个主要瓶颈。能够传输大文件,加快制造时间。EOS和nTopology合作该款解决方案主要针对文件的数据量缩减程序。该程序可以将文件大小减少99%,并将文件的加载速度提高60%,从而使文件的生成速度提高500倍。

除了节省时间之外,隐式互操作还保持了原始文件的保真度和设计意图。它跳过了网格创建和渲染步骤(这可能需要几分钟、几小时甚至更长时间,具体取决于文件的复杂程度),直接将数据传输并保存在隐式建模文件中。

破除设计与制造衔接的壁垒,3D科学谷认为设计软件与设备商的携手开发合作将成为3D打印行业的一种全球范围内的发展趋势。

l 参考资料:
1. nTopology平台隐式建模技术
2. 全面了解增材制造设计的全能选手—nTopology
3. 设计和仿真的计算建模平台nTopology的七个亮点
4. RealTime!GPU驱动的nTopology强大建模速度

insight

知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文

]]>
//www.ganjiayu.com/?feed=rss2&p=32517 0
nTopology平台隐式建模技术 //www.ganjiayu.com/?p=24351 //www.ganjiayu.com/?p=24351#comments Sat, 18 Sep 2021 06:14:11 +0000 //www.ganjiayu.com/?p=24351 nTopology是一款面向增材制造的高效设计平台。nTopology采用隐式建模技术,是一种基于数学函数或隐式模型的驱动式设计技术,使nTopology的设计流程具有高速度和可靠性。nTopology兼具CAD、CAE和CAM功能,可快速实现创成式设计、轻量化、拓扑优化等创新设计,输出可用于增材制造的产品解决方案。

本文将对nTopology平台所使用的隐式建模技术进行介绍,并对比其与传统B-reps建模方法的不同之处。

Video Cover_nTopology_Pera© nTopology隐式建模介绍

block 当代主流建模技术— B-reps系统

传统的CAD系统软件都使用B-reps(边界定义法)来表达实体对象的外部形态。B-Reps指的是构成物体边界表面的集合,实体中的各个面将根据点和边之间的拓扑关系进行串联并形成实体, B-Reps概念如下图所示:

pera_B-Reps_1来源:安世亚太

B-reps算法通过计算点线间的拓扑关系来定义实体,这样的算法一方面在做点与实体的包含关系时容易出错;另一方面,当设计师使用b-reps做圆角、抽壳和布尔交集等操作时,由于边线数量可能会产生变化,使得操作前后拓扑关系不一致,导致计算量很容易超负荷,而且报错几率也较大。

block nTopology的技术突破:隐式建模

nTopology软件使用了更为有效的隐式建模技术(Implicit Modeling),该建模原理基于隐式函数(Implicit Function)的运用,而隐式函数(简称i- function)是一个数学函数,它的作用是给三维空间内的每个点都分配一个值。

pera_B-Reps_2来源:安世亚太

如上图所示,该函数最重要的特性是:实体外部点对应的函数值是正数,但内部点的函数值则是负数,同时函数结果的绝对值即为点与实体的距离。学术一点的说,如果F是实体S的隐式函数,那么当点P在S内时,F(P)<0,当P在S外时,F(P)>0。当然,如果点P正好在S的边界处,则F(P)=0。

这样做的优势十分明显,隐式建模的核心算法基于一个函数形成的值域,当设计师进行几何体建模运算的时候,只需要从旧函数中构建一个新的隐式函数即可。而这样做的结果是,模型并不需要记录大量的拓扑关系,只需记录几个函数。因此我们的模型比B-reps算法小60多倍,而且因为运算量小,它也不会出现报错和无法显示的问题。

block nTop和隐式建模的发展前景

自1970年代首次开发b-reps系统以来,计算机硬件领域已经发生了巨大的变化。电脑现在配有多个CPU和以及强大的GPU,处理数据的能力大大增强。但由于B-reps算法包含很多特例性的分支,导致其并不适合在GPU上实现。而nTop则可以同时运用这两者,随着游戏行业的蓬勃发展,GPU的性能也得到了迅速发展,可以预见nTop和隐式建模的前景是非常广阔的。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=24351 0
全面了解增材制造设计的全能选手—nTopology //www.ganjiayu.com/?p=24223 //www.ganjiayu.com/?p=24223#comments Fri, 10 Sep 2021 08:04:42 +0000 //www.ganjiayu.com/?p=24223 从事增材制造设计的设计师们或多或少都经历过以下挑战:

点阵结构数据量太大,你想转个角度看看,但软件非常卡顿;想赶紧把辛辛苦苦建好的点阵模型赶紧保存起来,恰好就死机了,半天的工作付之东流;每一个零件都需要从头开始设计,尽管每次都是用同样方法做同样的操作,生生把自己干成一个工具人;手动给每一个细节特征(比如点阵单胞)都导上圆角,直到软件和你都累到崩溃;三周期极小曲面(TPMS)方程怎么写?在CAD软件里面画TPMS需要什么特殊技能?…….

现在,这些增材制造设计师所经历的挑战,可以交给面向增材制造的高效设计平台—nTopology来解决。

Video cover_nTopologynTopology面向增材制造的高效设计平台©来源:安世亚太

block 什么是nTopology?

nTopology是一款面向增材制造的高效设计平台,平台预置了大量增材制造常用的设计工具包,工程师通过调用若干个预置工具包、或自主开发定制的工具包,建立一个工作流,实现复杂几何结构的参数化设计。

nTopology集合了的强大几何建模和仿真分析功能,并充分考虑增材制造的工艺特点,能够帮助工程师快速掌握面向增材制造的设计方法,充分发挥增材制造带来的广阔自由度,同时可重复使用的工作流使得设计流程自动化,大大提高设计效率。

Pera_ntopology来源:安世亚太

block 增材制造设计的全能选手

nTopology设计平台集成了增材制造结构设计、结构仿真、打印切片等涉及全流程的全套功能,包括基本模块、增材制造模块、蜂窝/多孔材料模块、有限元分析模块、轻量化模块、拓扑优化模块。

Pera_ntopology_2来源:安世亚太

nTopology采用隐式建模技术,是一种基于数学函数或隐式模型的驱动式设计技术,使nTopology的设计流程具有高速度和可靠性。nTopology兼具CAD、CAE和CAM功能,可快速实现创成式设计、轻量化、拓扑优化等创新设计,输出可用于增材制造的产品解决方案。

Pera_ntopology_3来源:安世亚太

基本模块:包括数据导入导出、隐式模型转换/创建/特征操作、布尔运算、驱动设计的场(Field)创建、点阵晶格设计等;

增材制造模块:设置打印平台、添加支撑、切片,以及抽壳、晶格填充轻量化设计;

蜂窝/多孔材料模块:变尺寸、变厚度的晶格填充,复杂表面纹理设计,快速生成蜂窝/多孔材料;

有限元分析模块:线性静力、模态、屈曲、稳态热分析、点阵结构均质化材料分析,并支持有限元模型/网格的输出;

轻量化模块:晶格填充、表面加强筋设计、变厚度的抽壳设计等;

拓扑优化模块:考虑增材悬垂角等制造约束,自动几何光顺、重构,基于拓扑优化的材料密度分布自动进行变厚度的点阵晶格设计。

block 三大技术优势

相比于其他大多数设计软件,基于隐式建模技术的nTopology设计平台具有三大技术优势:

1.稳定可靠的隐式建模引擎:nTopology设计平台基于隐式建模技术(一种使用数学函数来表征几何结构外形及内部特征的方法),使得设计流程具有无与伦比的速度和可靠性。

Pera_ntopology_4来源:安世亚太

复杂几何结构的设计不再是挑战:可基于内置的工具包快速生成复杂晶格和周期性结构、可控导圆角的布尔运算、变厚度抽壳、复杂的穿孔图案、特殊的表面纹理等;

更快的设计速度:复杂晶格结构生成速度是其他软件的10倍以上,且占用内存小,可实现快速共享和协作;

极好的鲁棒性:基于隐式建模技术,使得nTopology平台中的几何操作永远不会失败,抽壳、布尔运算、偏置、导圆角等均可实现,非常适合解决面向增材制造的复杂结构问题;

良好的工程数据兼容性:其他软件的数据格式均可导入ntop平台, 转换为隐式模型,并用于生成新的几何图形;同时也支持数据导出至其他的CAD、CAM、CAE或PLM系统中。

2. 驱动式设计:驱动式设计提供了一种指定设计特征的参考控制方法,可快速实现基于数学公式、函数、实验数据、有限元分析结果或其他数据的结构参数驱动式设计,生成创新设计解决方案。

Pera_ntopology_5来源:安世亚太

预先验证的设计结果:不同于其他的拓扑优化概念设计需要进行结构性能验证,nTopology设计平台的驱动式设计结果,直接来自于基本的工程原理,且可以用预先验证的实验数据进行校准;

用于多物理场的优化问题:基于数学函数的驱动式设计,无论几何结构形状、压力、温度、流量等函数或公式均可作为驱动参数,因此可以实现其他软件无法实现的多目标、多物理场同时优化的复杂问题;

利用现有的工程知识:驱动式设计不仅可以基于有限元分析结果,还可基于实验数据、制造常识和其他的工程经验、工程模型等,具有独特的优势。

3. 可重复使用的工作流:nTopology设计平台的工作流可自定义、可自动化、可重复使用、可共享,大大提高流程效率,同时可帮助工程师获取工程知识。

Pera_ntopology_6来源:安世亚太

工作流完全可自定义:nTopology设计平台配备了一套内置的工具包,可以解决大多数工程问题,同时支持自定义工具包,这些用户定义的工作流可以重新打包为自定义工作流,并在其他工作流中重复使用;

工作流可重复使用:通常每个工作流都有特定的输入和输出,当使用相同的方式重新执行输入时,nTopology工作流将总是产生相同的确定性输出;输入参数改变时,可以再次利用已经定义好的工作流,生成新的解决方案。

block nTopology的应用价值

nTopology作为一款面向增材制造的高效设计平台,为客户大大提升设计效率,缩短产品开发的迭代周期,提高产品的性能,解决增材制造全流程的设计需求。

  • 自由拖拽模块化的工具开展设计,快速方便搭建设计流程;
  • 自定义工作流设计,避免重复搭建设计流程,大大提升设计效率;
  • 大量可选晶格及纹理库,快速迭代,实现产品晶格填充及表面纹理设计;
  • 快速搭建基于函数、实验数据和仿真分析结果驱动的设计,实现目标驱动的设计;
  • 含模型设计、轻量化设计、仿真分析、拓扑优化、打印支撑设计及模型切片等功能模块,可满足面向增材制造的复杂产品打印前准备。

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=24223 0
从大自然的蚂蚁和树木获得灵感,创成式软件构建面向未来的设计 //www.ganjiayu.com/?p=23440 //www.ganjiayu.com/?p=23440#comments Fri, 25 Jun 2021 08:06:48 +0000 //www.ganjiayu.com/?p=23440 在设计航空航天或汽车部件时,此前人类可能从未想过向蚂蚁和寻光植物细胞寻求建议,但如果使用创成式设计软件来塑造零件的设计,不过这一切已经不是梦想,实际上已经在做了。

此前,空客已投产的仿生学机舱隔离结构就来源于创成式设计结果。该结构是采用高强度轻质铝合金材料与粉末床激光熔化3D打印技术制造的,用于空客A320机舱中,起到分隔客舱与后部食品准备区的作用。本期,3D科学谷与谷友一起来领略创成式设计开启的未来制造能力。

Desktop Metal© Desktop Metal

创成式带来的新世界

Autodesk Fusion 360内置的 Project Dreamcatcher 和 Desktop Metal 的 Live Parts,以及nTopology 是目前创成式设计软件的典型代表。

Whitepaper_Orthopedic Implant_173D打印与设计的结合成就新型骨科植入物©《3D科学谷骨科白皮书》

开发人员透露,创成式软件中的创成算法部分受到蚂蚁如何使用信息素相互发送信号以及植物细胞如何吸引阳光以获得最佳营养的启发。开发人员指出,人们经常将创成式设计的输出描述为“仿生学”,这是因为有些算法具有与自然界的相似性。

仿生学和创成式设计之间的真正联系是一些软件如何利用自然界中发现的逻辑来获得其中算法的奥秘。

仿生学不是复制自然形状,而是复制自然解决问题的方法。

block 从自然界灵感赋予零件“生命力”

Live Parts 是 Desktop Metal 专注于增材制造的创成式设计软件,Live Parts 背后的一种算法是受到树木的启发——不是真正的树木,而是由类似体素的细胞构成的数字树。

Live Parts的部件是由自然激发算法驱动,这些算法会导致零件自动增加和适应,并且基于它们的功能和环境进行调整。它由一个图形处理器加速的多物理引擎驱动,Live Parts在几分钟内从单个构造中变大,并自动产生设计文件。这使用户能够迅速认识到人工智能制造的全部潜力,包括材料和成本效率。

Desktop Metal_Live PartsDesktop Metal 的 Live Parts 软件算法模拟植物细胞如何被阳光吸引以获取营养

© Desktop Metal

大自然的很多材料具有很强的适应性,而人造材料则不然。钢始终致密;陶瓷易碎,塑料有弹性。由这些制成的零件在整个过程中都表现出源材料的属性。另一方面,大自然中的很多物体出于多种目的在不同区域表现出适应性密度、弹性和脆性(例如肌肉、静脉和骨骼的组合)。

这驱动着设计者探索如何将大自然的材料在弹性、密度和脆性方面不断变化的能力引入到产品的设计中来。而这将使得未来,人们对具有微观转变的材料产生浓厚兴趣。

Desktop Metal 的 Live Parts 软件开发人员研究了植物细胞如何对外部刺激做出反应,比如来自光的化学物质。让部件中的细胞对压力和应变做出反应,然后产生额外的细胞,称为子细胞,建模过程就像自然界的细胞生长,从一个细胞开始,将它培育成一个胚胎,胚胎生长成一个有机体,随着它不断增长,它将实时适应环境。

Desktop Metal_Live Parts_1

Live Parts是由一个加速的、多物理引擎驱动。这给Live Parts提供了模拟过渡动力力量的独特能力,比如高频振动和低频振荡,以及自动生成的部件。这些部件能够实时地生长和适应这些变化的力量,就像真实世界的生物在不断变化的环境中成长一样。其结果是,这些部件的压力都非常均匀,材料效率高,强度高,重量轻。

Desktop Metal 一直专注于基于金属的 3D 打印,但今年年初,Desktop Metal 发生了巨大的变化。该公司以 3 亿美元的现金和股票交易完成了对 EnvisionTEC 的收购,EnvisionTEC 提供光敏树脂、陶瓷和其他材料的 3D 打印机。

为什么收购EnvisionTEC?根据3D科学谷的市场观察,EnvisionTEC是数字生物制造增材制造领域的先驱,其 Bioplotter 平台支持生产用于医疗应用的生物相容性部件,如骨再生、软骨再生、软组织制造、药物释放和器官打印,这或许是Desktop Metal 通过其Live Parts 软件无缝跨界到更宽的应用领域的一个有利桥梁。

block Autodesk Fusion 360 的创成式设计

将创成式设计与制造无缝结合,此前,欧特克就发布了创成式设计的2.5轴*版本,主要用于生成突破铣削约束的设计。这使得Fusion 360用户能够将3D打印与传统的CNC铣削实现更好的结合。

通过Autodesk Fusion 360提供的创成式设计功能,设计和可制造性都是内置的。增材制造和3轴以及5轴铣削加工之间具有各自的特点,这些特点使得这两者之间似乎隔了难以逾越的“鸿沟”,而欧特克近日发布的关于创成式设计的2.5轴版本使得任何拥有数控铣床的人都可以随意使用这种“折衷”的设计来进行加工。

除了可以直接访问Fusion 360基于云的创成式设计,高级仿真模拟和高级CAM功能外,欧特克Fusion 360集成工作区现在还提供真正的混合制造体验,在单一工作流程中结合了先进的增材制造和CAM功能。

Video Cover_Autodesk Fusion

在 Autodesk Fusion 360 的案例中,创成式设计的想法受到仿生学中自下而上的方法的启发。令人着迷的是,有一个算法来自“白蚁巢穴,以及白蚁使用信息素相互发送信号的方式,开发人员创造了压力或信息素梯度,核心方法非常简单,但结果却很复杂。

Video Cover_Autodesk Fusion_Ant

Part_Autodesk

 

Autodesk脊柱植入物创成式设计技术,灵感来自白蚁使用信息素相互发送信号的方式© Autodesk

有了这种受自然启发的逻辑作为其创成算法的核心,创成设计程序必然会不时创成有机形状,以不对称和复杂的表面为标志。但目前的制造方法无法与大自然所创造的奇迹相媲美,这使得创成式设计软件本身还有着很多进化的空间。

譬如大自然中的人体,人体是单一的组件来促进流体流动和交互结果,而这在航空航天领域也有类似的活动。那么未来或许创成式设计还可以进化到如何结合流体流动和结构功能,虽然这在创成式设计中目前还不是主流。

欧特克的开发团队已经在研究框架创成系统,这些系统可能在未来用于商业发布。

block 隐式建模

nTop是用于高级制造中的设计和仿真的计算建模平台,nTop的驱动方法将设计,仿真和制造知识统一起来,实现了自动化,从而使工程师可以拥有更大的设计自由度并改善工作流程。

 

Video Cover_nTopology

nTopology (nTop) 的开发始于鸟骨,当时的创始人希望编写一个算法来拓扑地模拟这种结构。

CAD 建模程序通常使用 BREP(边界表示)来描绘用于生产的零件。但该方法不易适用于有机形状(如人和动物的相貌)。对于这些,3D 建模人员通常求助于基于网格和多边形的软件。这两种方法不能很好地融合,这就是为什么角色动画师通常不会使用 CAD 程序来完成他们的工作。而且网格模型也有限制,尤其是对于复杂的形状,文件大小会急剧增加,从而导致加载和编辑困难。

Video Cover_nTopology 2

为了更好的模拟鸟骨这样复杂的结构,nTop 基于隐式建模,这种实现3D 形状的方式比 传统CAD 文件快数千倍,文件更小,而且复杂性不会破坏系统,nTopology 使用户可以完全控制创成工作流、优化过程及其输出的各个方面。创建可重用的工作流,以满足用户的应用程序的独特要求。

根据3D科学谷的市场观察,nTop平台是开放性的,可以与其他软件工具连接。可以与其他计算机辅助设计(CAD),有限元分析(FEA),计算流体动力学(CFD)及其他软件工具直接集成,并实现极快的处理速度。

nTop平台还可以从其他软件中获取设计或数据,并将其用于设计改进或迭代。用户可以轻松地将他们现有的设计或数据导入nTop平台,可以非常快速地执行多物理场分析,并评估性能,稳健性和使用寿命等特性,进一步实现设计优化。

nTop平台还支持通过工业4.0计划以提高数据驱动制造效率的努力。平台的工作流程软件功能可实现流程自动化,消除低价值的手工工作,这些特点还有助于实现数据的无缝传输。

而在3D科学谷看来,在所有创造价值的源头,在所有可能颠覆的源头,算法无疑是最重要的部分之一。

*名词解释:2.5轴的工法是用来铣削由袋状区域,岛屿,轮廓外形,沟槽,垂直壁面,平坦面和钻孔加工等工序所组成的弓箭。通常使用在电子零件外壳,精密机械零件,冲床模具加工。

l 文章来源:3D科学谷内容团队

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=23440 0
建模更自动化,深度了解隐式建模引擎正在改变3D打印行业 //www.ganjiayu.com/?p=22779 //www.ganjiayu.com/?p=22779#comments Thu, 22 Apr 2021 09:24:15 +0000 //www.ganjiayu.com/?p=22779 信息化环境为人们提供了根本性的颠覆机遇,即使是建模方式,也在变得更智能,更加远离低附加值的手动过程。

关于让建模过程更自动化,3D科学谷曾经分享了nTop平台软件如何智能化点阵结构的圆角。本期,3D科学谷与谷友进一步深度领略智能化背后的隐式建模引擎技术,共同感受这种技术将如何为3D打印行业带来改变。

Part_ntop© nTopology

多、快、好、省的建模自动化

随着技术的日新月异,产品设计工程师需要与行业需求保持同步。由于先进制造技术的迅速发展,产品开发过程变得充满挑战。对产品进行定制以满足功能需求的需求不断增加,这引发了一场技术革命,在所有工程学科中都达到了前所未有的复杂性水平。

Whitepaper_Orthopedic Implant_17更复杂的产品定制需求

图片来源:3D科学谷

无论是汽车、航空航天、国防还是医疗保健,每个行业都致力于采用更自动化的解决方案来提高产品开发过程的效率和性能。

Valleg_Part正在发生改变的产品

图片来源:3D科学谷

这也是nTopology作为专为数字制造而构建的工程软件平台出现的地方。根据3D科学谷的深入了解,nTopology的nTop平台的核心是牢不可破的隐式建模引擎,而nTopology在工程设计中率先应用的一项技术。

block 为什么要自动化建模工作?

拿点阵结构建模来距离,点阵填充轻量化设计所需要实现的零件复杂性已经超过了传统的CAD软件的原有功能。对设计进行修改的时候,例如仅在节点,横梁和连接体之间应用圆角或倒圆角所涉及的工作量在使用传统软件工具的时候往往变得“浩瀚无边”。这种低附加值的工作会延缓工程流程,抑制真正的创新,并扼杀组织保持竞争优势的能力

ntop图片来源:nTopology

当通过点阵技术减轻零件重量时,从DfAM(增材思维)角度看,在点阵晶格和外蒙皮之间建立牢固的连接非常重要(以防止分层)。传统的3D建模过程首先需要选择所有交叉点,然后才能尝试在所有位置创建回合。

软件工程师知道这会带来非常痛苦的工作量,更不用说当新的圆角值根本无法重建时,重建错误的加剧会带来沮丧的情绪。通过启用nTop平台的高级计算方法,可以通过输入圆角值(包括较大的圆角值),消除了对模型故障的担心。

ntop_2图片来源:nTopology

nTop平台自动化蓬勃发展的建模系统,使得工程师可以快速评估新设计。通过利用先进的设计控制,可以自动执行圆角操作,在几秒钟内可靠地微调模型,并继续将注意力放在如何快速确定最佳产品设计,并且更快地设计创新零件。

block 隐式建模引擎

传统CAD软件并不是为解决当今产品设计过程中复杂的建模问题而构建的。

在高级制造和创成式设计中,诸如边界表示(B-rep)和网格之类的CAD软件中的当前瓶颈正变得越来越成问题。例如,B-rep和网格建模器无法以足够的可靠性执行常规操作,例如偏移、取整、绘图,甚至简单的布尔值。

ntop_3图片来源:nTopology

nTop的隐式建模技术提供了一套新的工具,这些工具可以克服运行限制,同时描述具有不同材料特性的零件。强大的建模功能使工程师能够自动化大量的工作流程,而这些工作流程以前需要人工干预才能进行固定装置,包装和实施支撑结构的设计。使用隐式建模可以轻松设计CAM输出所需的轮廓,图案填充或任何其他复杂的几何形状。

根据3D科学谷的了解,隐式建模带来了以前无法实现的精细细节。可变厚度偏移,自动消除干扰,渐变的材料特性和位移映射纹理等

此外,nTopology软件提供的最大优势之一是拓扑优化。本质上是一个涉及到模拟,隐式建模,应用制造条件并重复操作的反馈循环-根据一组边界条件和约束,Top Opt可用于合成现场驱动的稳健工程解决方案,例如…

1.冲击或能量吸收–结构部件

2.轻量化,刚度增加或不增加

3.改进热管理,例如热交换器,散热器

4.声学设计–减振,NVH解决方案

5.流体流量优化等。

总而言之,nTop是用于高级制造中的设计和仿真的计算建模平台,nTop的驱动方法将设计,仿真和制造知识统一起来,实现了自动化,从而使工程师可以拥有更大的设计自由度并改善工作流程。

根据3D科学谷的市场观察,nTop平台是开放性的,可以与其他软件工具连接。可以与其他计算机辅助设计(CAD),有限元分析(FEA),计算流体动力学(CFD)及其他软件工具直接集成,并实现极快的处理速度。

nTop平台还可以从其他软件中获取设计或数据,并将其用于设计改进或迭代。用户可以轻松地将他们现有的设计或数据导入nTop平台,可以非常快速地执行多物理场分析,并评估性能,稳健性和使用寿命等特性,进一步实现设计优化。

nTop平台还支持通过工业4.0计划以提高数据驱动制造效率的努力。平台的工作流程软件功能可实现流程自动化,消除低价值的手工工作,这些特点还有助于实现数据的无缝传输。

而在3D科学谷看来,在所有创造价值的源头,在所有可能颠覆的源头,算法无疑是最重要的部分之一。

更多内容,请参考3D科学谷发布的上篇-《3D打印与换热器及散热器应用2.0》下篇-《3D打印与换热器及散热器应用2.0》

l 文章来源:3D科学谷内容团队

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=22779 0
案例 l 看3D打印-增材思维如何实现散热器设计优化 //www.ganjiayu.com/?p=22726 //www.ganjiayu.com/?p=22726#comments Fri, 16 Apr 2021 08:30:08 +0000 //www.ganjiayu.com/?p=22726 增材制造(AM)为新颖的散热器设计开辟了新途径,可以针对流动性和传导性进行优化。通常除了组件本身之外,电连接和铜走线的电阻还会产生一些热量。为避免电路故障,针对散热器的定制设计是另外制造的,旨在生产能在安全温度范围内运行并保持在安全温度范围内的电子产品。本期3D科学谷与谷友特别分享汽车大灯散热器的优化设计,以共同深度了解3D打印为产品性能所带来的跳跃式进化。

Part_nTopology© nTopology

更紧凑、更好

block 什么是散热器?

我们通常提到的散热器是一种用于冷却电子元件的热交换器。由于其制造简单,成本低,尺寸小和散热可靠而被广泛使用。在过去的几十年中,在结合微型和纳米技术发展的电子设备的小型化方面已经付出了很多努力。因此,电子学的散热技术和增强散热片的热性能变得越来越重要。

根据3D科学谷的了解,可以通过修改空间或流体域的特性来增强散热器的散热性能。电子系统的小型化给设计在有限空间内运行的高效系统带来了额外的挑战。增强热传递的有效方法是修改几何形状,而3D打印-增材制造成就产品复杂性的这一特点为散热器的优化设计打开了新空间。

在本文中,使用nTopology对传统几何进行了优化,以解决上述挑战,并采用具有功能性且适用于金属增材制造的几何形状进行设计。

3D打印可以实现:

- 增强从电子元件的传热;

- 在不影响传热效率的情况下减小散热器的尺寸;

- 通过在设计中加入仿生技术来增强散热效果;

- 设计优化

传热系数与表面粗糙度相关,当表面粗糙时,对流传热系数较高。一条思路是通过关注于增加的表面积和表面粗糙度,以改进散热器的设计。

根据3D科学谷的了解,通过nTopology软件可以为LPBF(基于粉末床的选区激光熔化)技术制造的散热器提供一种有趣的设计优化途径。在本期案例中,所有样品均由AlSi10Mg和铜合金制成。

通过广泛的数值参数研究,本案例对用于发光二极管(LED)灯的被动冷却的拓扑优化设计进行了研究。这些设计针对垂直方向进行了优化,并且与点阵鳍设计以及简单的鳍设计进行了比较。这种零件是使用AM(增材制造)进行小批量生产的理想选择。优化过程有利于将材料放置在设计零件的外边界上,以实现更多的散热。
案例中头灯中的LED散热器通过AM增材思维设计使其紧凑而又不影响散热器的性能。除了上述结果之外,通过增加表面粗糙度还可以进一步提高效率。温度梯度满足散热片传递的要求,并且温度保持与传统方法略有相同。

nTopology_LED_Power_1▲图1:nTopology设计可提高LED散热片的散热效率。

在这个案例中,设计优化主要体现在:

- 拓扑优化应用于LED灯的被动冷却散热器的设计。

- 优化的拓扑结构为被动冷却设备的设计提供了新的见识。

- AM增材思维使用TPMS(三重周期最小表面)结构,该结构可为散热器产生优化的温度梯度,并提供自然对流的湍流路径。

根据3D科学谷的了解,在散热器中,所谓的人工表面粗糙度,是指任何具有足够规则性且专门设计用于增强热传递的表面图案。与肋粗糙和凹陷的表面相比,氧化皮粗糙表面的传热增强令人惊讶地良好。这证明了通过在表面光洁度上引入适当的变化,仍有改善传热的空间。

nTopology_LED_Power_3▲图2:拓扑设计优化有助于增加表面粗糙度以提高热传递率。

block 热分析

进行热分析可以确定组件在不同温度和条件下的行为,分析结果和仿真技术旨在帮助更好地管理电子电路中的散热。决定冷却机制时要考虑的因素包括半导体的封装特性,所需的工作条件以及散热特性。通常可以从制造商的数据表中获得此信息。

自然对流冷却适用于散热量较小的电子元件。但是,对于冷却组件,由于产生热量,可能需要将冷却器与热管和风扇结合在一起的各种冷却技术的组合。

nTopology_LED_Power_4▲图3:显示电子元件中温度梯度的分析图像。

nTopology_LED_Power_5 ▲图4:汽车中的LED大灯。

block 结论

本案例研究了在制造用于电子冷却的扁平和翅片散热器时,通过LPBF(基于粉末床的选区激光熔化)技术制造的散热器表面粗糙度以及优化的设计对流传热增强的影响。

最终,采用铝材料的AM增材思维(DfAM)设计的表面积比传统设计提高了27%。与传统设计相比,AM增材思维(DfAM)设计中的热变化高达130C(板载芯片附近的压降)

更多内容,请参考3D科学谷发布的上篇-《3D打印与换热器及散热器应用2.0》下篇-《3D打印与换热器及散热器应用2.0》

l 文章来源:3D科学谷内容团队

白皮书下载,加入3D科学谷QQ群:106477771
网站投稿请发送至2509957133@qq.com
欢迎转载,转载请注明来源3D科学谷,并链接到3D科学谷网站原文。

]]>
//www.ganjiayu.com/?feed=rss2&p=22726 0
一文看懂影响3D打印的软件有哪些? //www.ganjiayu.com/?p=19611 //www.ganjiayu.com/?p=19611#comments Wed, 27 May 2020 05:37:55 +0000 //www.ganjiayu.com/?p=19611 随着中央政治局常委会会议提出“加快5G网络、数据中心等新型基础设施建设进度”,顶层设计为新型基础设施建设按下“加速键”。可以预见,在更强大的新基建基础设施上,软件将在我国的工业制造环境中获得前所未有的良性发展生态环境。

对于3D打印这一数字化特征尤为明显的制造技术,软件可以说是解锁3D打印产业化潜力的基础。本期,结合Digital Alloys公司总结的软件信息,3D科学谷与谷友一起来领略那些影响3D打印的软件。

Software_Digital Alloys3D打印领域的软件。来源:Digital Alloys

block 软件与数据相互进化

在生产环境中为了有效实施3D打印,需要用于设计、仿真、预处理、任务分配、制造、检查和质量管理的软件工具。

l 设计(CAD)

工程师和设计师使用计算机辅助设计(CAD)软件以数字方式定义零件的三维几何形状。在大多数情况下,用于设计3D打印零件的CAD软件与常规制造所使用的软件相同。CAD软件的公司包括Dassault Systemes-达索系统,Siemens-西门子,PTC和Autodesk-欧特克等。对于某些应用,使用针对增材制造的特点进行优化的表面和结构,这优化的方式包括填充复杂的胞元结构,空心特征和添加数字纹理等。在这方面诞生了一些针对性很强的软件包括欧特克的netfabb, Materialise,nTopology和Zverse等。

乔布斯(Steve Jobs) 曾经说过,21世纪最好的创新是将生物学与技术相交叉。工业制造领域中有很多零部件或机械的设计都是从生物学中得到的灵感,比如说潜艇的设计是从海豚体形或皮肤结构中得到的灵感….这样的例子在工业领域还有很多很多。

那么,为什么我们需要将生物学的概念引入制造中呢?大自然创造的生物结构巧妙而复杂,人们如何将这些大自然的作品“复制”到工业制造中呢?

日益发展的智能化设计软件与3D打印技术为我们提供了一条创造仿生结构的捷径。市场上存在一类特殊的设计软件,称为“创成式设计”以及“拓扑优化”(GD / TO)软件,可定义加载方案,设定边界条件和设计约束条件下优化零件几何形状,以实现所需的性能。该软件依靠计算机迭代与仿真来完善零件的几何形状,将CAD设计规则与来自计算机辅助工程(CAE)工具的仿真相结合。

创成式设计可以帮助设计师优化零件强度重量比,可以模仿自然结构发展的方式,创造出最强大的结构,同时最大限度地减少材料的使用。

例如,人体骨骼具有复杂的内部和外部特征,由硬质外皮(骨皮质)骨形成刚性外层,但还需要允许血管这样脆弱的组织穿过骨骼内部的蜂窝状结构。这种蜂窝材料由胶原纤维组成,具有令人难以置信的抗拉强度和抗压强度。因此,蜂窝结构已经被大量需要轻量化的结构所采用,从飞机涡轮叶片到生活中不起眼的纸板箱中。在所有这些应用中,蜂窝使得零件更坚固和更轻。

创成式设计是一个人机交互、自我创新的过程。根据输入者的设计意图,通过”创成式”系统,生成潜在的可行性设计方案的几何模型,然后进行综合对比,筛选出设计方案推送给设计者进行最后的决策。

“创成式设计”以及“拓扑优化”GD / TO软件的领先提供商包括Altair、PTC的Frustum、Autodesk、西门子的Solid Edge ST10和Paramatters等。

l 模拟(CAE)

产品上市时间的缩短、研发周期的缩短,以及新产品发布速度的提升使制造业用户面临着持续增长的创新压力,当今产品的复杂性和多样性也在日益提高,这给产品研发带来了压力。

通过传统试错的方法,已经无法在今天的全球竞争中保持领先的地位,因为这种方式费力、费时并且昂贵,而通过计算机辅助工程(CAE)仿真的力量驱动设计、管理复杂性、预测潜在的问题,已成为产品设计、生产过程,甚至是产品运营过程中不可或缺的环节。

根据安世中德工程仿真高级咨询专家的寇晓东博士,一方面增材制造为设计带来的自由度,将仿真的应用提到了产品设计的前端,从设计最早期就发现并解决设计缺陷,增材制造为正向设计提供了工艺基础;另一方面仿真技术能够激发增材制造的潜能。

在3D打印的情况下,CAE不仅用于优化设计,而且还用于预测制造过程、优化制造过程和开发新材料。由于3D打印涉及的物理复杂问题,CAE软件可以帮助缓解质量问题的许多潜在原因。根据安世中德的技术总经理包刚强,增材制造仿真的应用价值体现在改善、减少和开发几个方面。改善,包括改善金属增材制造设计流程、对工艺过程的了解、机器生产效率、材料利用率、可重复性和质量;减少,包括减少打印失败,打印时间,不合格零件,后处理,试错,设备维护和对环境的影响;开发,包括开发新材料,新机器,新参数,个性化微观结构和期望的材料属性。

可以说仿真对于3D打印至关重要,渗透到从建模到前馈控制,再到过程控制、材料开发等3D打印工艺链的方方面面。

CAE的子类包括分析结构和热行为的有限元分析(FEA),以及用于分析流体流动的计算流体动力学(CFD)。FEA和CFD在建模和优化AM过程中都至关重要。

随着3D打印-增材制造技术的不断成熟和应用,通过CFD和FEM在制造前预测性能、优化设计并验证产品行为,零件经过结构流体特性拓扑优化、结构拓扑轻量化以及尺寸优化设计之后通过增材制造技术加工出来。CFD、FEM技术与3D打印-增材制造技术相得益彰,互相成就,共同推动零件实现性能升级。

除了用于改善整体打印质量外,CAE工具在帮助优化诸如打印速度以及能量和材料输入等参数方面也起着重要作用,这些参数是3D打印经济学中的重要因素。CAD和CAE的结合变得越来越紧密无缝,建模与仿真的无缝结合正成为大势所趋,在这方面,欧特克(Autodesk)2019年11月就宣布了与工业仿真软件企业ANSYS 之间的下一步合作关系,双方将建立起设计软件与仿真软件的无缝互操作性,为制造用户带来革命性的设计与工程敏捷性。这种合作可以实现增强创成式设计等新的自动化流程,而自动化的流程将缩短产品上市时间,使多个工程团队可以更为顺畅的地一起工作。

l  制造处理(CAM)

计算机辅助制造(CAM)是使用软件来控制诸如机床之类的制造设备。CAM软件将CAD和CAE数据作为输入,并创建机器指令(G代码),该指令通过编程以执行精确的加工过程。在3D打印领域,CAM过程涉及五个关键步骤:

确定零件构建方向:在零件中确定零件方向的最佳方法取决于多种因素,例如精度和表面光洁度要求、工艺、支撑结构等。CAM可以建议最佳构建方向,但通常也需要用户输入。

支撑策略:支持零件有很多不同的方法,最佳的支撑结构取决于其几何形状,过程,材料和其他变量。在大多数CAM软件中,此步骤在很大程度上是自动化的。

加工余量:为了达到所需要的高表面光洁度和精度要求,通常需要预留一定的加工余量。这些余量通过机加工等后加工过程被去除。

零件布局:某些3D打印过程可以一次打印很多零件,分布在整个基板上,也可以堆叠在z轴上。CAM软件有助于嵌套零件,从而使每次构建的零件数量最大化。

加工策略:完成上述所有步骤并选择了打印参数后,CAM软件将生成G代码,该代码将发送至打印机以执行打印过程。

目前更高级的工业增材制造用户通常利用第三方处理工具来获得更多控制和效率。这种独立的CAM软件可以在处理计算要求高、复杂、高分辨率的构建中发挥作用。还允许将一个API与一组不同的3D打印设备一起使用。这些软件包括Netfab(Autodesk),Magics(Materialise)和Dyndrite。

其中,来自西海岸的创业公司Dyndrite的用于增材制造的新3D几何内核使用原始的数学表示形式(B样条曲线,NURBS和B-rep数据)来提供更好的增材加工路径。通过不依赖STL这样的数百万个三角形来定义打印,Dyndrite的解决方案避免了“数据膨胀”,并可以提高打印零件的质量。这意味着通过消除需要修理STL的耗散动量的步骤,从而提高了可重复性并提高了生产速度。

l 工作流程(MES / ERP / PLM)

制造工作流程软件已在常规供应链中使用了数十年。该软件的类别包括制造执行系统(MES),企业资源计划(ERP)和产品生命周期管理(PLM)。

走进任何3D打印公司,您将发现同样的挑战:很多企业还在使用Excel表格管理整个制造过程,那些包含关键数据的Excel电子表格被存储在各个团队成员系统的本地硬盘上。唯一集成到业务的其余部分是公司服务器上的文件共享。虽然很多企业正在使用企业资源规划(ERP)系统,为公司的每个部门提供可视性,但ERP却是“跳过”车间加工环节的。

然而,随着3D打印成为制造领域不可或缺的一部分,Excel电子表格的方法很快变得难以为继。乍一看3D打印似乎只是一个步骤,但是加工中的“黑匣子过程”实际上充满了离散的操作和数据收集机会,包括打印准备,构建模拟,实时监控和分析,跨机器衔接以及设施的调度,后处理要求等等。

虽然3D打印工艺有着其特定的需求和具体的挑战,但是如果用户真的愿意接受3D打印作为一种制造技术,它就不能作为一个孤立的孤岛来运作。

正如3D科学谷在《一张图看懂国际3D打印产业链》中所提到的,在过去几年中,随着3D打印技术走向工业生产,除了设计软件和仿真软件之外,与3D打印相关的软件中出现了两个关键的新类别:工作流程和安全软件。工作流程软件对增材制造工艺来说同样重要。制造企业在将增材制造技术纳入生产的过程中,对工作流程软件的需求将不断增加,这类软件可以管理增材制造过程中所涉及的生产步骤。工作流软件的前景在过去五年中不断发展,现在许多软件供应商都提供了管理增材制造工作流的解决方案。

Materialise、AMFG、3YourMind、Authentise、Link3D、Oqton和其他软件提供商正在通过重新定义传统MES来支持管理3D打印工作流程各个方面的软件产品来满足3D打印的自动化管理需求。

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

]]>
//www.ganjiayu.com/?feed=rss2&p=19611 0
详解航空燃油滑油3D打印热交换器设计流程 //www.ganjiayu.com/?p=19544 //www.ganjiayu.com/?p=19544#comments Sun, 24 May 2020 04:40:02 +0000 //www.ganjiayu.com/?p=19544 长期以来,传统的建模方式和无法实现复杂几何形状的制造工艺,制约着热交换器设计与效率的突破,而面向增材制造的高性能复杂几何结构,以及高强度铝合金3D打印材料,为热交换器设计的突破带来了新的可能性。

3D科学谷曾分享过一个增材制造飞机燃油滑油热交换器(FCOC)的设计案例。本期,3D科学谷将与谷友继续探讨这一案例,但今天的侧重点是这一3D打印飞机燃油滑油热交换器的设计过程,以及此过程中体现的通过先进设计和增材制造提高FCOC热交换器性能的全新可能性。

设计过程涵盖三个步骤:原始的CAD设计,nTOP 平台中的设计,通过ANSYS CFX 进行流体力学仿真分析(CFD)。

part_nTopology_1图1 三重周期性最小表面高性能热交换器,用于航空涡轮发动机。来源:nTopology

飞机发动机通过燃烧燃料获得强大的推力,在燃烧过程中产生大量需要消散的热量。在现代飞机中,燃油会在机翼中停留,并因此而变为低温燃料。在飞机机翼中被冷却的燃油将可能产生结晶从而阻塞系统,但这些冷却的燃料也为调节飞机燃烧室、机械和电气系统的温度提供了一种途径。通过燃油滑油热交换器(FCOC)在机油和燃料之间传递热能,将能够起到以下作用:

  • 使机油冷却到足以润滑和冷却系统
  • 防止燃料结晶
  • 使燃油接近点火温度

block 解锁先进航空热交换器设计与仿真

在FCOC 新一代高性能热交换器的设计项目中,要求是通过增材制造热交换器替换传统管壳式热交换器,并研究是否可以使用先进设计和增材制造来提高这种热交换器的性能。

 part_nTopology_heat图2 管壳式热交换器。来源:nTopology

l 在有限空间中提高热性能

设计师需要在给定的有限空间中进行设计优化,一种有效的办法是使用高级几何图形,以数学方式精确地控制此设计空间内部的几何图形。在FCOC 项目中,设计师使用nTOP 平台定义了一个体积,用于FCOC 的设计迭代,迭代方式是在实现表面积最大化的同时实现壁厚最小化。

nTopology_form

在本案例研究中使用了三重周期最小表面(TPMS),它既具有高强度重量比,又具有非常高的表面积质量比。螺旋(gyroid) 是一种TPMS,可用于定义内部体积。通过在这种热交换器中使用螺旋结构,与更相同尺寸的传统管壳式热交换器相比,该螺旋结构的表面积增加了146%。

Gyroid = S in(x)Cos(y) + S in(y)Cos(z) + S in(z)Cos(x)

当这一设计与增材制造技术相结合时,将能够实现以往无法实现的具有高强度和散热要求的零件。

为实现最小壁厚,设计师选择专为增材制造开发的高强度7000系列铝合金(7A77.60L)作为热交换器制造材料,由此,FCOC的壁厚得以最小化,同时仍能满足飞机的临界爆破压力结构要求。7A77.60L 铝合金的屈服强度几乎是铸造级增材制造铝合金AlSi10Mg的两倍,通过该材料制造的螺旋结构壁厚能够减少为原来设计的一半。

表面积增加146%,而壁厚减少一半,使得相同体积内的FCOC的总热量传递相比传统设计增加大约300%。

l 流体力学仿真预测增材制造热交换器性能

ANSYS CFX 是一种先进的计算流体动力学求解器,被用于评估FCOC的性能。在整个设计迭代阶段,使用了多次CFD仿真对设计进行评估。

设计师根据最初的仿真结果,对能量在螺旋管内部的分配方式进行优化,从而使总传热系数增加12%。从nTop平台到ICEM(用于网格细化和转换)和ANSYS CFX 是一个可重复的工作流程,能够帮助设计师快速设计迭代。

nTopology_3图3 左:带有油速流线的传热系数值;右:显示了带油速传热系数的燃料速度流线。来源:nTopology

图3 显示的仿真分析中,分别使用质量流量约为0.45 kg / s和0.3 kg / s的燃料和油液特性以及边界条件。左图显示了燃料域内部传热系数的等高线图,同时显示了油的流线。右图描绘了油域内部的传热系数的轮廓图,其中燃料流线移动通过了螺旋结构。螺旋内芯的高度仅约100mm(3.9英寸),直径仅为60mm(2.4英寸),整体性能为3KW(10,200 Btu / Hr)。

l 设计方法

接下来,我们来了解一下增材制造FCOC热交换器的具体设计方法。

图4概述了将几何图形从nTop 平台转换为所选CFD工具的过程。该过程是由用户隔离热交换器的流体域,并在nTop 平台中生成这些流体域的体积网格来定义的, 然后将这些流体体积网格导入CFD工具,应用适当的边界条件,再进行流体模拟。

nTopology_CFD图4 从nTop 平台到CFD所需的流程。来源:nTopology

在进入nTop 平台之前,FCOC的初始设计概念在纸上以及计算机辅助设计(CAD)中经历了多次设计迭代。主要设计考虑因素包括:最小化压降,增强流动特性,引入冲击力以改善传热系数以及进行增材制造设计。

nTopology_5图5 FCOC热交换器的原始设计概念。来源:nTopology

图5 显示了冷、热燃料在热交换器中的流动方式。热油进入顶部管道(1),在蓝色圆顶周围移动,进入螺旋结构(描绘为红色圆柱体),进入内径并从底部的管道(2)退出。冷燃料通过左下方的开口(3)进入,撞击出油管,向上移动通过螺旋结构,撞击在蓝色圆顶上,然后离开右上角(4)。

图5中可见的CAD实体和表面用于定义热交换器的体积。利用这些物体和表面来设计TPMS结构的填充量。CAD软件Cero中的工具用于生成热交换器的外壳和圆顶结构。

l nTop 平台中进行面向增材制造的设计

当在CAD 软件Creo中最终确定边界表示形式时,程序集将另存为单个实体,并将这些实体导入到nTop 平台中。导入后,为了在nTop平台中正确利用CAD几何图形,有必要将零件转换为nTop隐式实体。

part_nTopology_6图6 圆柱状的螺旋结构。来源:nTopology

nTop 平台具有在圆柱坐标系中创建TPMS结构的独特功能(如图6所示)。这对于更广泛的热交换器设计以及特定的流体流动是有利的。

如图6所示,通过nTop 平台可以改变周长、半径和高度周期,晶胞和壁厚。设计人员可以定制螺旋结构的形状以满足性能要求,例如作为表面积和横截面流动面积。这种几何控制还允许设计人员调整流体进入和排出的方式,以最大程度降低总压降,同时优化热交换器的系统级性能。图7-图10显示了如何调整晶胞大小、周长计数和高度周期,在整个热交换器中实现平滑的流体通道。

part_nTopology_7从左到右依次为图7,8,10。来源:nTopology

到了这一步,设计师已将CAD几何导入并转换为nTop隐式实体,并生成了流体域。下一步是为创建挡板或分流器,这个步骤是为了防止冷、热两种流体发生混合。

part_nTopology_9图9 在设计过程中考虑了各种进气口配置,从而最大化流量和可制造性。来源:nTopology

此步骤中的主要挑战是生成用于与流体体积相交的体积。这可能需要设计人员转换额外的CAD实体(面,边,顶点),并分配参数控制参数,做到随着CAD几何形状的更改工作流是可重复的。一旦生成了相交的体积,只需选择要阻止的合适流体即可。大部分相交体积是通过提取CAD曲面创建的,然后将其转换为nTop隐式实体并进行加厚。其他相交的体积使用原始几何块生成新的几何。使用的主要模块是圆环,然后将其重新映射,以创建如图9所示的拱形通道,从而产生了一种对增材制造更友好的结构。

至此,挡板设计的过程已经完成,有必要将新形成的热交换器芯组装到热交换器组件上。在此过程中,nTop 平台可以在周期性的挡板结构和“实体”几何体之间无缝地创建圆角。

l 导入ANSYS CFX

本环节将对用于CFD仿真的离散化nTop 平台实进行描述。如先前在图4中的描述,流体域和热交换器壁已生成,现在需要的是生成这些区域的体积网格。

part_nTopology_11图11 nTop 平台内部的网格划分过程。来源:nTopology

在图11中,左图描述了用于创建和导出网格的模块,中间部分是热交换器内芯网格,右上方是带有ANSYS Fluent作为格式选项的导出窗口。网格化完成后,可以将体积网格导出为ANSYS Fluent网格(CFD网格文件类型可从nTop 平台获取),然后导入ICEM CFD*。

CFX和Fluent 都是很好的求解器,设计用户可以根据要解决的物理类型进行选择。例如,对于高马赫数/超音速流,首选Fluent,而对涡轮机械和其他不可压缩的流体仿真,可以首选CFX。为了设置和定义任何类型的计算分析,用户必须应用边界条件来选择曲面,这些包括但不限于流体入口和出口面。

定义边界面并转换网格后,将每个流体域分别导入ANSYS CFX,可以识别定义的面,并可以轻松将其分配给其适当的边界条件。在出口为0 kPa的情况下,燃料和机油的入口质量流率分别设置为0.45 kg / s和0.3 kg / s。

一旦建立了从nTop平台到 CFD的工作流程,设计用户就可以在整个设计迭代过程中继续使用该流程。来自nTop平台的网格输出可以在ICEM中识别为设计更新,然后可以将其重新导入并重复整个CFD工作流程。

l 总结

在增材制造飞机燃油滑油热交换器(FCOC)设计与流体力学仿真案例中,已证明了对nTop 平台中生成的复杂几何图形执行CFD的总体可行性。

nTop 平台能够创建复杂的几何图形(TPMS结构、流体体积、平滑的格-固过渡),同时保持对几何模型的完全控制,然后将几何图形导出到外部的仿真平台进行验证。在与外部CAE 工具集成的同时,在单个工具中执行此类复杂操作的能力是空前的,并且可以允许在复杂几何图形上实现快速的设计迭代。

* ICEM CFD是ANSYS的模块,用于网格细化,转换和生成,作为边界选择工具。

参考资料:

“Unlocking Advanced Heat Exchanger Design and Simulation with nTop Platform and ANSYS CFX”

加入3D科学谷产业链QQ群:529965687 免费下载。

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

]]>
//www.ganjiayu.com/?feed=rss2&p=19544 0
案例 l 3D打印与高性能几何结构结合,推动下一代电子散热器制造 //www.ganjiayu.com/?p=17901 //www.ganjiayu.com/?p=17901#comments Tue, 17 Dec 2019 07:51:35 +0000 //www.ganjiayu.com/?p=17901 在计算机、智能手机等电子设备中存在大量的集成电路,高温是集成电路的“敌人”,会导致系统运行不稳,使用寿命缩短,甚至有可能使某些部件烧毁。这些电子设备中的散热器起到了将热量传递出去,调节设备温度的作用。因此散热器对设备长效稳定运行起到了关键的作用。以计算机为例,随着人们对于计算能力要求的提高,对设备散热性能的要求也随之提升,而这对散热器设计优化提出了挑战,其中显著的挑战是在给定体积中将散热表面积和散热性能最大化。

根据3D科学谷的市场研究,增材制造技术,特别是金属3D打印技术在散热器制造中的应用,为散热器设计优化带来了更高自由度,3D打印用于散热器或热交换器的制造满足了产品趋向紧凑型、高效性、模块化、多材料的发展趋势,特别是用于异形、结构一体化、薄壁、薄型翅片、微通道、十分复杂的形状、点阵结构等加工,3D打印具有传统制造技术不具备的优势。

本期,3D科学谷将分享一个面向增材制造的散热器设计探索与分析案例,该案例体现了3D打印散热器与传统散热器相比在设计与性能方面的优势。

heat exchanger_whitepaper_273D打印热交换器/散热器的优势。来源:上篇-《3D打印与换热器及散热器应用2.0》

block 高性能复杂几何结构

散热器/热交换器传递热量的方式有三种:传导-通过直接接触传递热能;对流-通过流体的实际运动传递热;辐射-借助电磁波传递能量。在这个案例中,仅考虑使用传导和对流的散热方式。

Heat_nTopology_1热量传递的三种方式:1. 传导;2.对流;3.辐射。
来源:nTopology

在此案例中,nTopology 公司的设计师通过nTop Platform 软件定义了一个用于生成散热器的体积,这些散热器将实现表面积最大化,同时实现质量最小化。

Renishaw_nTopology3D打印的三重周期性最小表面电子散热器。

3D打印设备:雷尼绍 RenAM 500Q

来源:nTopology

设计师使用了三重周期性最小表面(TPMS),对于结构应用而言,该设计显示出高强度重量比。该设计如果与增材制造技术结合使用,将使设计师能够创建兼具高强度和散热特性的多功能结构。

Heat_nTopology__2具有不同周期性和厚度的三种TPMS结构。来源:nTopology

nTopology 对Gyroids(螺旋),Schwarz基元和Lidinoids 这三类TPMS结构进行了研究与评估,其中每种类型的结构都是正弦和余弦的线性组合,而这些组合会在三维空间中形成周期性的波形几何形状。就像二维波形一样,设计的可能性可以通过改变这些方程式的幅度和周期来实现,通过将这些设计输入与实验设计(DOE)方法结合起来,可以准确地评估这些组件的性能。

Gyroid = Sin(x)Cos(x)+Sin(y)Cos(z)+Sin(z)Cos(x)

来源:nTopology

无源电子散热器受所有三种传热方式的支配。热量从热源(如计算机芯片)传导到散热器的底部,然后通过对流(70%)和辐射(30%)从散热器散发。为了最大化散热器的散热性能,在设计散热器时需考虑如何最大化与散热器接触的环境空气量

Heat_nTopology_workflownTopology Platform工作流程。来源:nTopology

随着热量的散失,对流自然会导致空气流过散热器的散热片。TPMS类型散热器的旋转鳍片可增强边界层混合,与传统散热器设计相比,具有提供更高有效表面积的潜力。

Heat_nTopology_3散热器性能图。确定了最佳的散热器设计,该设计可在实现表面积最大化的同时实现重量最小化。来源:nTopology

作为这项工作的一部分,nTopology 进行了简单的数值研究,从而找出性能最高的TPMS散热器,即设计输入可最大程度地增加表面积,并最大程度地减少最终散热器的质量。设计师使用nTop Platform 计算几何内核以及分析方法进行了实验,设计师可以快速进行几何更改并评估设计输入的性能输出。从上图中可以看出哪个设计的表面积最大。

3D科学谷将在本周发布的《3D打印与换热器及散热器应用2.0》-下篇,分享国内外机构在3D打印散热器、热交换器领域代表性知识产权、软件,换/散热器设计、仿真与优化,激光考虑,材料考虑,后处理考虑,敬请关注。

- – - – - – - – - – - – - – - – - -

知之既深 行之则远

三维世界,全球视野,尽在3D科学谷!

点击观看轻松20万+3D科学谷创始人最新人气微课:

《3D打印发展趋势及中国市场的机遇与挑战》

Video cover_Valley Micro class

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

]]>
//www.ganjiayu.com/?feed=rss2&p=17901 0
雷尼绍联手合作伙伴力证增材制造技术在制造脊柱植入体方面极具优势 //www.ganjiayu.com/?p=17659 //www.ganjiayu.com/?p=17659#comments Wed, 04 Dec 2019 01:31:33 +0000 //www.ganjiayu.com/?p=17659 工程技术领域的跨国公司雷尼绍联手两大先进技术公司力证:金属增材制造 (AM) 技术在制造脊柱植入体方面极具优势。在该项目中,雷尼绍同Irish Manufacturing Research (IMR) 公司和nTopology公司联手简化了从设计到增材制造的转换流程。

IMR公司首先使用nTopology公司的新一代设计软件设计了一个具有代表性的钛合金颈椎植入体,然后在雷尼绍RenAM 500M金属增材制造系统上制成该植入体。

Spinal implant_Renishaw

“传统制造工艺无法制造的具有网状结构的脊柱植入体可以利用增材制造技术实现,”雷尼绍医疗和口腔产品部市场经理Ed Littlewood解释道。“具有网状结构的植入体质量轻巧,可以更好地满足所需的负载条件;而且表面面积更大,有助于骨整合。因此可以模拟骨骼的机械特性设计增材制造植入体,以改善患者结局。但是如果没有合适的设计工具,这一切都只是空谈。”

“使用传统的CAD工具设计复杂的网状结构实属勉为其难,甚至是缘木求鱼。”nTopology的应用工程经理Matt Rohr解释道。“nTopology的宗旨是改进和简化现有工艺流程。我们将复杂结构的设计时间从几天缩短到几分钟,大大加快了项目进度。”

IMR公司的高级研究工程师Sean McConnell说:“雷尼绍不辞辛劳地与我们一起改进脊柱植入体的增材制造工艺。在双方的共同努力下,我们通过一系列测试确定了一套最合适的产品参数设置,从而将实现植入体关键特征所需的后处理量减少了九成。”

Spinal implant_Renishaw_1

脊柱植入体用于为罹患退行性椎间盘疾病、椎间盘突出症、腰椎滑脱、椎管狭窄、骨质疏松症等多种疾病的患者恢复椎间盘高度。经过增材制造工艺改进的植入体设计可以帮助患者缩短手术时间、减少翻修手术,从而节约医疗资源和成本。

雷尼绍还在位于南威尔士的Miskin工厂使用增材制造设备生产医疗产品,比如颅颌面植入体和口腔支架等。

文章来源:雷尼绍

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

]]>
//www.ganjiayu.com/?feed=rss2&p=17659 0