新加坡国立 l 3D打印保留金属有机骨架-MOF/共价有机骨架-COF材料的关键结构特征所面临的机遇与挑战

谷专栏

以下文章来源于nanomicroletters ,作者纳微快报

根据3D科学谷的市场观察,2021年10月,日本大阪、同步辐射研究所和东京大学合作,开发出一金属有机框架材料(MOF)薄膜制备新工艺,在水-有机溶液界面上制备出具有三维纳米结构的MOF材料,为在传感器、储能设备等领域应用奠定基础。所制备的薄膜具备高度组织化三维纳米结构且厚度均匀,保证了良好导电性,解决了传统方法制备的MOF材料导电性较差限制其实际应用的难题。

国内复旦大学武培怡教授团队、中国科学院兰州化学物理研究所等科研机构在MOR的3D打印方面多有建树。随着3D打印技术的不断进步和材料科学的深入研究,预计MOF和COF将在能源、环境、生物医学等多个领域发挥更加重要的作用。

近日,新加坡国立大学的研究人员在《Nano-Micro Letters》上发表了Challenges and Opportunities in Preserving Key Structural Features of 3D‑Printed Metal/Covalent Organic Framework 。借助纳微快报的分享,本期3D科学谷与谷友共同领略关于3D打印金属有机框架-MOF和共价有机框架-COF的挑战、机遇与未来发展方向。

“ 3D Science Valley 白皮书 图文解析

valley 有机框架mof

article_MOF▲论文链接:https://doi.org/10.1007/s40820-024-01373-w

MOF和COF的3D打印前景广阔,不仅能够为这些材料提供更多的形态和结构设计可能性,还能够根据特定的应用需求定制其功能。随着3D打印技术的不断进步和材料科学的深入研究,预计MOF和COF将在能源、环境、生物医学等多个领域发挥更加重要的作用。”

MOF COF

3D科学谷发现

3D Science Valley Discovery

机遇:

  1. 宏观结构的设计性:3D打印技术为MOF和COF的宏观结构提供了更高的可设计性,使得这些材料可以被塑造成具有特定功能的复杂3D结构。
  2. 性能的提升:通过3D打印技术,可以实现MOF和COF的整体材料,这些材料在气体存储/分离、传感、液体处理等领域展现出比粉末形式更好的性能。
  3. 工业化的推进:3D打印技术被认为是推进MOF和COF工业化的有前途的方法之一,有助于开发下一代功能材料。
  4. 材料的稳定性和可回收性:通过优化3D打印工艺和材料选择,可以提高3D打印MOF和COF的整体稳定性和可回收性,这对于可持续发展和环境保护具有重要意义。
  5. 多组分材料的界面连接:3D打印技术为不同MOF或COF材料之间的界面连接提供了新的可能性,有助于制备具有更复杂结构和功能的复合材料。

Insights that make better life

block 研究背景

金属有机框架(MOF)和共价有机框架(COF)是由各个模块单元周期性连接形成的独特多孔材料。由于MOF和COF(M/COFs)可以通过调整构建单元来精确定制框架和功能,包括可调节的孔径、丰富的孔体积和巨大的功能化可变性,使得其在气体存储/分离、传感、液体处理、发光、能量存储/转换和生物医学等各个领域得到了广泛的应用。然而,阻碍M/COF进一步商业化的主要限制之一是材料常为粉末状态,这给运输、集成和回收带来了挑战。为解决上述技术问题并推进工业化,3D打印M/COF整体材料技术被认为是最有前途的方法之一,可用于开发下一代功能材料。

block 亮点

1. 介绍了3D打印金属/共价有机框架(M/COF)的研究现状,分别对M/COF混合整体材料和M/COF覆盖整体材料进行了讨论。
2. 概述了浆料/支架形成和3D打印/覆盖工艺的设计策略的最新进展,旨在3D打印框架中保留M/COF的更好结构特征(表面积、孔隙率和微形态)。

block 内容简介

金属有机骨架(MOF)和共价有机骨架(COF)是当前先进多孔材料的主要分支,其可调节的微观结构特征在各种应用中具有重要的价值。新兴的3D打印技术进一步为MOF和COF(M/COF)的宏观结构提供了更高的可设计性,所构筑的3D整体材料可具有突出性能。然而,目前可用的3D打印M/COF策略面临着严重破坏微观结构特征的重大挑战。如果在3D打印整体中保留M/COF的微观结构,这将为相关应用带来巨大的改进。新加坡国立大学John Wang综述了3D打印的M/COF(分为混合整体材料和覆盖整体材料),讨论了它们在性质、应用和当前研究状态方面的差异。针对两种类型的3D打印M/COF,进一步讨论了在3D打印过程中,保持优异的M/COF微观结构的浆料/支架成分和打印/覆盖方法的最新进展。通过对3D打印M/COF现状的分析,提出了在3D整体材料中实现高度保存的微观结构的未来研究方向

I 3D打印M/COF材料的简介和挑战

图1展示了当前3D打印M/COF材料的技术和挑战。与其他材料相比,M/COF的3D打印难度更大。它们的流变特性不太适合顺利挤出,使得3D打印的整体材料容易破裂。图1a为已被开发用于制造各种M/COF的3D打印技术。与其他粉末材料相比,3D打印M/COF材料所面临的挑战主要有以下几点(图1b):(1)打印过程中的高温和高压导致M/COF晶体变形或分解;(2)膏体中的添加剂会导致孔隙堵塞、表面覆盖、死物质堆积;(3)M/COF与添加剂/骨架之间的粘合不良会导致3D结构崩塌和材料损失;(4)浆料中的溶剂或工作环境会腐蚀M/COF结构。

article_MOF_1▲图1. a不同3D打印技术的插图;b 3D打印M/COF整体材料当前面临的挑战。

II 3D打印M/COF整体材料的现状

图2a展示了两种典型不同形式的3D打印M/COF。一种是使用含有M/COF和添加剂/溶剂的浆料进行3D打印;另一种是将M/COF涂覆在预先开发的3D打印骨架。通过对3D打印M/COF整体材料分析,表明两种不同类型的整体材料在应用方面表现出了明显差异(图2b)。图2c显示了3D M/COF混合整料和3DM/COF覆盖整料的不同机械性能、表面积和质量负载值的分布情况。

article_MOF_2▲图2. a两种3D打印M/COF整体材料图;b不同应用领域已发表作品的数量;c已发表的有关3D打印M/COF的著作中报告的表面积、抗压强度和M/COF负载质量值的分布(红色虚线是5次多项式拟合曲线)。

III 3D打印M/COF混合整体材料

M/COF混合整体材料的制造包括三个步骤:含M/COF浆料的制备、3D打印和后处理。根据M/COF与添加剂之间的组成和相互作用,浆料可分为三种类型:混合M/COF浆料、纯M/COF浆料和粘合M/COF浆料(图3a)。三种浆料之间更详细的比较如图3b所示。首先,3D打印技术需要仔细设计浆料中的三种成分,以获得到更高印刷适性、表面积和机械性能。此外,不同打印方法和后处理也会对整体材料产生显着影响,具体研究实例如图3c–i所示。

article_MOF_3▲图3. a三种M/COF浆料图;b三种M/COF浆料性能比较图;c使用35 wt%(绿色)和51 wt%(红色)CPL-1 MOF(左)配制的糊剂的粘度图;d相同条件由35 wt%(左)和51 wt%(右)配制的CPL-1浆料打印的整体材料;e 3D打印纯P、E、T、U和2/3 T+1/3E材料(虚线)及其基于MOF复合材料(实线)的应力和应变曲线;f PUG-ZIF-8复合生物墨水在25 °C时的凝胶态和37 °C时的溶胶态;g MOF-74@Torlon糊剂的粘度图;h 3D打印HKUST-1图;i通过Pluronic F127模板共组装后打印3D-TpPa-1的合成路线。

为最大限度地提高3D打印M/COF的负载量和固有性能,研究者在前、中和后的全部过程中做出了许多改进。其中,预改性是一个主要改进方向,通过对M/COF或添加剂进行功能化以增强它们的相互作用。图4所展示的为多种改性策略示意图,旨在促进M/COF与浆料中添加剂之间的结合力,这将显着增强M/COF的分散性,防止M/COF颗粒聚集。

article_MOF_4▲图4. a MIL-53(Al)-NH₂结构示意图;b TOCNF中ZIF-L的原位合成示意图;c ZIF67-PA12纳米复合粉末的制备示意图;d采用新型GPG技术的HKUST-1整体配方示意图;e DIW整体材料、HKUST-1粉末和120 °C丙酮溶剂中清洗合成样品的N₂物理吸附等温线;f E-BP/ZIF-67的四通道液滴微流体合成(插图:E-BP、E-BP/Co²⁺和E-BP/ZIF-67微滴的光学图像);g MIL-53@ABS膜和MIL-53颗粒图像。

控制后处理操作,对于增强3D打印M/COF整体材料的性能也很重要。图5所展示为当前研究所提出的一些典型策略。研究发现,由于整体材料的不均匀收缩率可能会导致裂缝并损害结构完整性,干燥过程是后处理中的最关键步骤。一般来说,在较低温度下缓慢干燥可得到更致密的晶体堆积和更高的机械强度。

article_MOF_5▲图5. a使用不同干燥基材的无粘合剂3D打印COF的外观;b多孔和无孔基材上3D打印整体材料的干燥机制示意图;c SNW-1整体材料、SNW-1粉末和SNW-1/F127整体材料在273 K下的CO₂和N₂吸附曲线;d浸渍前后的MIL-101整体材料的形成过程;e TEPA-MIL-101粉末、预渗透MOF的3D整体材料、以及经过后处理的3D整体材料的N₂物理吸附等温线

IV 3D打印M/COF覆盖的整体材料

当前,许多研究工作致力于开发先进M/COF沉积方法,用于制备3D M/COF覆盖整体材料。这些方法可以分为两种类型:直接涂覆M/COF颗粒和原位生长M/COF颗粒(图6a)。直接涂覆方法,是在合成M/COF颗粒后,负载到3D打印支架的表面上;而生长法需将3D整体浸入前体溶液中,M/COF则在支架表面成核生长。图6b–c展示了几种不同3D M/COF涂覆整体材料的研究。两种方法都具有独特的优势,已被深入探究以开发更先进的3D打印M/COF整体材料。

article_MOF_6▲图6. a两种不同M/COF覆盖方法的示意图;b pZIF-8 nanoMOF附着到基底上的示意图;c用于将活性纳米粒子固定在等离子体处理的PLA载体上的策略;d pZIF-8和SBS-QCSC底物的制备示意图;e原位MOF生长和封装过程。

对于一些不易促进M/COF生长的惰性表面材料,则需要进行修饰(图7)。一种方式是通过在表面引入接枝官能团(图7a),或是直接采用原子层沉积(ALD)等先进的沉积方法来确保M/COF在骨架表面的均匀分布(图7b, c)。另一种方式是先将一种M/COF前体混合在糊料中,然后将3D打印的整料浸入含有其他前体的溶液中,使其与其他前体反应形成M/COF(图7d, e)。这比通过直接共混方法或表面原位生长技术制备的M/COFs-聚合物复合材料具有优势。

article_MOF_7▲图7. a 3D打印COOH修饰的纳米碳电极上的COF结构示意图;b在Ti₆AlV₄板材上制备ZIF 8和ZIF 8-Ag涂层;c SEM观察涂有ZnO的ABS滤光片;d用于FDM 3D打印的ZIF-8和ZnO-NP复合纤维丝的制备示意图;e 3D打印水凝胶样品的SEM图像。

V 结论和未来展望

3D打印技术为MOF和COF材料带来大量优势和机遇。然而,在M/COF浆料的制备和3D打印方法的开发方面还需要付出更多的努力。未来研究中,建议进一步加强以下四个方面的研究(图8):
(i)探索使用可以与M/COF颗粒交联以生成混合基体的轻质添加剂,以获得适合各种应用需求的理想组合;
(ii)仍然需要全面的系统数据,包括整体材料和粉末对应物的机械强度、M/COF负载、表面积和孔结构,将使研究人员能够了解3D打印方法的有效性;
(iii)开发一种通用且简便的制造方法,标准化且易于使用的方法将为各种新应用开辟可能性;
(iv)增强 3D打印M/COF的稳定性和可回收性。

article_MOF article_MOF_8▲图8. 建议未来发展方向。

来源
微纳快报 l

新加坡国立大学John Wang等综述:3D打印保留MOF/COF材料的关键结构特征所面临的机遇与挑战

纳微快报:

Nano-Micro Letters《纳微快报(英文)》是上海交通大学主办、在Springer Nature开放获取(open-access)出版的学术期刊,主要报道纳米/微米尺度相关的高水平文章(research article, review, communication, perspective, highlight, etc),包括微纳米材料与结构的合成表征与性能及其在能源、催化、环境、传感、电磁波吸收与屏蔽、生物医学等领域的应用研究。已被SCI、EI、PubMed、SCOPUS等数据库收录,2022JCR影响因子为 26.6,学科排名Q1区前5%,中科院期刊分区1区TOP期刊。

Citation
Challenges and Opportunities in Preserving Key Structural Features of 3D‑Printed Metal/Covalent Organic Framework
Ximeng Liu, Dan Zhao, John Wang*

Nano-Micro Letters (2024)16: 157

https://doi.org/10.1007/s40820-024-01373-w

图片1

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

分享:

你可能也喜欢...

Baidu
map