2016年3D打印大事年度回顾(上)

正如乔布斯所说,未来-是由现在的点连成的线组成,3D科学谷在2017年伊始与谷友一起回顾2016年发生了哪些值得重视的事件,从中感受3D打印行业的成长与前景。

同时让我们共同来见证,是否真如Daxue所预测的,3D打印在中国,2018年,3D打印机达到3万7千8百台的销量,销售额达到1.09亿美金。

美3D打印超声速发动机燃烧室测试成功

2016年1月18日,位于弗吉尼亚州的Orbital ATK公司骄傲地宣布,他们已成功地在NASA兰利研究中心测试了3D打印超音速发动机燃烧室。不仅测试分析结果确认达到甚至超出性能要求,3D打印的超音速发动机燃烧室也被证明是能够承受最长持续时间的风洞试验记录的一款燃烧室。

orbital_atk_1

哈佛大学实现精准可控的4D打印,来自自然界的灵感

2016年1月25日,波士顿的哈佛大学威斯生物工程研究所和哈佛大学保尔森工程与应用科学学院的科学家们宣布将他们的微型3D打印技术推向第四个维度:时间。4D打印的水凝胶复合材料实现了精确的局部肿胀和变形的行为。其中的奥秘来自于水凝胶复合材料中含有来自木材的纤维素纤维,这些纤维是使植物的形状发生变化的微观结构。

harvard

新的桌面型多材料、高速金属打印机NVLABS来了!

2016年1月21日,总部位于波士顿的NVBots宣布桌面机多材料高速金属打印机NVLabs的研发成功。不仅如此,桌面、多材料、金属打印、高速,这些以往看起来技术上冲突的词汇,NVBots用一台设备将其集合全了。

nvlabs_1

超声波技术,开启3D打印纤维增强复合材料的新时代

2016年1月,英国Bristol大学的研究论文:“通过超声排序的微观结构3D打印”,发表在《智能材料与结构》杂志上。为了充分控制复合材料微观结构的分布和方向,英国Bristol大学找到了代替熔融长丝的3D打印复合材料的方法,该方法是基于光敏树脂技术的3D打印技术。

Bristol_3

新的复合材料打印技术通过超声波来定位数以百万计的微小增强纤维,形成一个微观的加固框架,超声波的作用与激光束同时作用,通过超声波用来诱导材料的微观结构排列,通过激光束用来固化环氧树脂。

装有3D打印燃油喷嘴的波音737MAX首飞成功

2016年1月29日,波音公司最新的机型737MAX在波音雷顿工厂的测试机场成功完成了首飞。 整个过程历时2小时47分钟,没有出现任何异常。这架飞机的动力来源是一对由CFM国际(GE航空与法国飞机制造商Snecma的合资公司)开发的LEAP-1B发动机引擎。除了采用了单晶镍合金压气机叶片和非常轻质的陶瓷复合材料(CMCs),这架飞机还有一个亮点,那就是安装了19个3D打印的燃油喷嘴。

boeing-737-max-makes-maiden-flight-3d-printed-fuel-nozzles-success-3

LLNL通过3D打印出微架构、超轻量级的电容

2016年2月12日,美国劳伦斯·利弗莫尔国家实验室(LLNL)开创了三维打印和多孔材料的交集,LLNL和加州大学圣克鲁斯分校的科学家们成功的通过3D打印出超级电容,通过超轻的石墨烯凝胶3D打印技术使得能源存储获得量变的突破。

llnl_1

Carbon 3D添竞争对手,中科院福建物构所研发出更快打印技术

中科院福建物构所3d打印工程技术研发中心林文雄课题组宣布在国内首次突破了可连续打印的三维物体快速成型关键技术,该3D打印机的速度达到了创记录的600 mm/h,可以在短短6分钟内,从树脂槽中“拉”出一个高度为60 mm的三维物体,而同样物体采用传统的立体光固化成型工艺(SLA)来打印则需要约10个小时,速度提高了足足有100倍!

clip_2

日立开发出3D打印高熵合金技术

2016年2月,日立制作所和日本东北大学开发出了在拉伸强度和耐腐蚀性能方面出色的3D打印高熵合金“HiPEACE”。与以往的其他制造方法相比,HiPEACE拉伸强度达到铸造方式的1.4倍,点蚀电位提高至1.7倍。用于制造化学工厂等的设备部件时,可延长设备寿命、提高运转率。

new-3d-printing-technique-for-high-entropy-metal-alloy-pioneered-by-hitachi-tohoku-university-researchers-2

维克森林大学开发出用于器官、组织和骨骼的3D打印机

2016年2月15日,来自美国北卡罗莱纳州维克森林大学(Wake Forest University)再生医学研究所的科学家们称,他们已经开发出可以制造器官、组织和骨骼的3D打印机,理论上,这些打印出来的器官、组织和骨骼能够直接植入人体。

incredible-3d-bioprinter-can-create-transplantable-human-ear-muscles-and-bone-tissues-1

波音悬浮式3D打印专利

2016年2月,波音公司成功获批了一项超前的3D打印技术专利。它与以往任何3D打印技术都不同,在3D打印过程中没有任何实体的打印构建平台,在打印过程中,打印对象还可以任性的做空中翻转动作。通过磁场还可以旋转3D打印对象,并将材料沉积在打印对象底部,实现360度无死角的3D打印。

boeing-patent banner

含3D打印关键部件的火箭发动机完成点火测试

含3D打印关键部件的氧/烃发动机将在新西兰马希亚半岛发射。这是美国的Rocket Lab(火箭实验室)目前正在为新西兰的Onenui第一轨道发射场交付的项目,该发动机刚刚完成第二级点火测试。

rocket-lab-moves-closer-to-rocket-launch-after-new-successful-3d-printed-engine-test-2

像墨水打印一样打印液态金属?Xjet获得光大和欧特克投资

2016年3月,液态金属打印技术Xjet成功完成了一轮总额为2500万美元的融资,领投的机构是中国光大控股、私募股权基金Catalyst CEL和3D软件巨头欧特克(AutoDesk)公司。Xjet的技术亮点包括纳米金属射流技术、金属混合油墨、新型喷墨装置和喷射方法(高温处理)、出色的分辨率、高于SLS5倍的速度。

xjet_1

哈佛大学打印出带血管的人工组织

2016年3月,哈佛大学打印出带血管的人工组织,研究人员在整个打印过程中使用了三种生物墨水。其中第一种墨水含有细胞外基质,这是一种由水、蛋白质和碳水化合物构成的复杂混合物,用于连接每个细胞,从而形成一个组织。第二种墨水包含细胞外基质和干细胞。第三种用于打印血管,这种墨水在冷却过程中融化,所以研究人员可以从冷却的物质中将墨水抽出来,并保留空心管 。

bioprinting-printing-living-tissue-1

FDA 批准一款3D打印多孔钛颈椎椎间融合系统

2016年4月,FDA)批准了一款3D打印多孔钛颈椎椎间融合系统。该系统由医疗植入物生产商Renovis Surgical Technologies公司生产,名称为Tesera™SC。Tesera™SC是一种独立的多孔钛颈椎椎间融合系统,它拥有三螺丝设计和一个锁定盖板以防止螺丝松动。Tesera™SC可用于两种脊柱前凸角度,并可以根据情况变动高度和尺寸,以用于特定的椎间高度修复。Tesera™SC融合系统中的多孔的表面结构,这样可以使骨骼在生长时深入植入物,从而最大限度地提高强度、稳定性和稳固性。

tesera implant-2

宾州大学发布增材制造材料战略路线图

2016年4月,宾夕法尼亚州立大学发布了增材制造材料战略路线图,路线图的目的是推动材料创新,并推动增材制造材料协会的成立。分为五个战略推动力:材料、过程及零件的集成设计方法;发展过程-结构-性能的关系;建立零件和原料测试科学研究报告;开发增材制造过程分析能力;探索下一代增材制造材料和工艺。路线图中明确了加快设计新的材料,并鼓励增材制造业在未来10年内广泛使用这些新材料。

roadmap

GE启动匹兹堡增材制造中心

2016年4月5日,GE启动其匹兹堡的增材制造中心CATA (The Center for Additive Technology Advancement),主要专注于为GE的所有业务开发和实施3D打印的工业级应用。

ge-additive-manufacturing-facility-2

麻省理工完整3D打印液压机器人

2016年4月,麻省理工学院计算机科学和人工智能实验室的研究人员(CSAIL)成功打印出第一个3D打印功能型机器人,机器人由固体材料组成,通过液体压力驱动。这些液压驱动的机器人在打印完成后即可以从商业上可用的三维打印机和“走出去”的机器,几乎没有组装要求。

mit_1

西班牙精度高达0.4mm,行程达100米的机器人用于3D打印

2016年4月23日,西班牙班Zaragoza的AITIIP研究机构研发的机器人宽6米,高5米,长20米,其极端的0.4mm的高精度是由其激光制导系统实现的,机器人的运动并不是由机械系统所控制,而是由一个由计算机控制的激光制导系统,它可以连续监测机器人的位置,激光制导系统,能够捕捉每秒1000次扫描结果来引导机器人的运动,这使得该机器人成为制造大型零件的理想选择。

AITIIP_2

世界首例将3D打印用于制造超导谐振腔

2016年4月,澳大利亚墨尔本大学的科学家Daniel Creedon及其团队在获得3D打印超导谐振腔腔的突破,团队所使用的铝粉的成分与标准的工业铝Al-6061并不一样。他们使用的铝粉重量比中含有12%的硅,而通常只有0.8%。此外,它还含有少量的铁(0.118%)和铜(0.003%)。

cavity_2

口腔设备制造商普兰梅卡推出牙科3D打印机

2016年5月,芬兰牙科设备制造商普兰梅卡(Planmeca)推出了一款3D打印机,以帮助牙科实验室和大型诊所完善工艺、发展业务。该打印机的名称为Planmeca Creo™。Planmeca Creo 打印机使用的3打印技术是DLP技术(UV固化树脂的数字光处理技术),配备普兰梅卡自行开发的专用软件。

Planmeca 1

华中科技大学武汉光电国家实验室研发出4激光器的大型SLM金属打印设备

2016年5月,华中科技大学武汉光电国家实验室教授曾晓雁领导的激光先进制造研究团队研发的大型SLM金属打印装备深度融合了信息技术和制造技术等特征,由4台500W光纤激光器、4台振镜分区同时扫描成形。

wuhanslm_2

西门子的蜘蛛机器人3D打印机

2016年5月,西门子技术研究院在普林斯顿大学的技术团队研发了一种八条腿的3D打印机器人,它的名字是SiSpis。SiSpis 的外形和工作原理非常像一只蜘蛛,身上装有一个可挤出PLA 打印材料的3D打印机、相机和激光扫描仪。

siemens spider

空客发布世界上第一辆3D打印电动摩托车

2016年5月,空中客车集团CEO将亲自向外界展示世界上第一辆全3D打印的电动摩托车——Light Rider。Light Rider模仿动物骨骼的仿生式车身框架设计也让人印象深刻。Light Rider是由空客子公司APWorks开发研制的,工程师们在设计车身时更多地考虑了力量线仿生力学的设计。

thgz

惠普多射流熔融3D打印机正式上市

2016年5月,惠普公司的3D打印解决方案正式推出市场。首次推出市场的3D打印机包括两种型号,分别是HP Jet Fusion 3D 3200和HP Jet Fusion 3D 4200。其中4200被设置为具备更高的制造能力水平,可以满足从原型到短期制造等各方面的需求。其中,HP Jet Fusion 3D 3200的起价为13万美元,如果用户需要选配后处理系统等其他工具,售价约为15.5万美元。HP Jet Fusion 3D 4200的市场零售价则要超过20万美元,价格根据配置不同而有所不同。

hp-system-300x167

FDA 再次批准了两类3D打印脊柱植入物

2016年6月,美国食品药品监督管理局(FDA)于2016年6月1日批准了两类3D打印脊柱植入,分别是医疗设备公司K2M 的CASCADIA Cervical(颈椎)植入物和CASCADIA AN Lordotic Oblique(前突斜)植入物。这两类植入物在制造时所使用的技术均为K2M公司的层状3D 钛技术。

k2m-3d implant 3

空客技术验证机-3D打印小飞机Thor上天

2016年6月,柏林航空展上,航天业巨头空中客车公司(Airbus)推出了全球第一架3D打印小飞机Thor。该飞机非电子部分,诸如推进器、起落装置等均采用绵纶制造。因此,制造该机型无需模具辅助,过程简单,机身也非常轻便——机身全长3.9米,重量仅46磅(约21千克)。

airbus_1

将对智能设计产生巨大影响的麻省理工Cilllia毛发建模平台

2016年6月,麻省理工推出Cilllia建模平台,通过平台上CAD设计的步骤,通过滑块式界面,用户可以很容易地将成千上万的毛发在短短几分钟内设计完成,只需要确定毛发的角度、厚度、密度,和毛发的高度。可以用这样的毛发做很多事情,包括日用品、机械产品、感应器、驱动器…这打开了更为广阔的智能设计领域大门。

MIT_Cilllia_2

贺利氏集团研发非晶态金属3D打印材料

2016年6月,以贵金属和高科技著称的德国贺利氏集团与Exmet的合作研发的非晶态金属3D打印技术,有望改变该材料的应用现状。

Heraeus_3D_amorphe-Metalle__image_w700

德国科学家3D打印微型透镜系统

2016年6月,德国斯图加特大学的科学家在微型光学透镜的制造领域取得了进展,该成果已发表在 Nature Photonics杂志上。他们使用纳米级的3D打印技术制造的微型透镜仅相当于人类头发直径的2倍。有了这样的微型透镜,像盐粒一样大小的微型镜头、微型医学成像系统、带成像系统的微型无人机等设备的出现将成为可能。

nphoton fig 1

版权所有3D Science Valley,转载请链接至:www.51shape.com
网站投稿请发送至editor@51shape.com

分享:

你可能也喜欢...

Baidu
map